

Einzigartiger Rundum-Schutz

Wärmeschutz im Winter
Im Winter bleibt dank PAVATEX die wohlige Wärme

lange Zeit im Haus.

Sommerlicher Hitzeschutz

Dank PAVATEX kann der nächste Sommer kommen: Weniger schwitzen - mehr Wohnkomfort.

Schallschutz

Eine hohe Rohdichte absorbiert sehr effizient Luftund Trittschall - PAVATEX sorgt so für eine hohe Behaglichkeit und vermeidet Stress.

Diffusionsoffenheit

Dank geringem Diffusionswiderstand atmungsaktive Gebäudehülle schafft ein spürbar behagliches und ausgeglichenes Raumklima.

Luftdichtheit

Dank abgestimmten und geprüften Systemen grosse Sicherheit gegen Wärmeverluste und weniger Bauschäden.

Geringe Emissionen -

gutes Innenraumklima
Bei der Materialauswahl die Wohnqualität steuern und

Bei der Materialauswahl die Wohnqualität si so für ein gutes Innenraumklima vorsorgen.

Brandschutz

Für Ihre Bedürfnisse an Schutz und Sicherheit -PAVATEX erfüllt die hohen gesetzl. Anforderungen.

Nachhaltigkeit

Klimaschutz betrifft alle. Mit PAVATEX erhalten Sie eine energieeffektive Gebäudehülle.

logisch geprüft und bewährt seit Jahrzehnten

1 PAVATEX allgemein	4	
- PAVATEX-Anwendungsbereiche	4 – 5	
2 Die Produkte fürs DACH	6	
 ISOROOF-NATUR / PAVATHERM-PLUS PAVATHERM-COMBI / PAVATHERM PAVATHERM-FORTE / PAVAFLOC PAVISO / Unterdach-KN bituminiert PAVATHERM-PROFIL / PAVAFLEX PAVAROOF-W PLUS / PAVAROOF-K PAVATEX Luftdichtprogramm Weiteres Systemzubehör 	6 7 8 9 10 11 12 - 16 17	
3 Anforderungen	18	
Überblick SIA 232MindestdachneigungenAnforderungen an den U-Wert der KonstruktionHinweis zu Ausschreibungstexten	18 19 20 21	
4 Bauphysikalische Eigenschaften	22	
 Sommerlicher Hitzeschutz Brandschutz Luftdichtheit der Gebäudehülle Wissenswertes zum Thema: "Richtiges" Lüften 	22 25 26 27	
5 MINERGIE-Aufbauten	28	
PAVATEX und MINERGIE - eine EinheitZertifizierte MINERGIE-Module mit PAVATEX	28 29	
6 Steildach	30	
 - Neubau - Zwischensparrendämmung - Aufsparrendämmung - Sanierung - Von innen - Von aussen 	30 37 42 44	
7 Flachdach	48	
	40	
8 Konstruktive Hinweise	50	
9 Verarbeitungshinweise	56	
 Sparrenunabhängige Verlegung Aufsparrendämmung PAVACOLL PAVISO PAVAROOF-K / PAVAROOF-W PLUS Flachdach Hinweis zur Verarbeitung sämtliche Dichtprodukte 	56 57 58 59 60 61 62	

Einzigartiger Rundum-Schutz

Dämmstoffe von PAVATEX sind technisch hochwertige Produkte und geprüfte Konstruktionen, die für alle Bereiche des Hauses die optimale Lösung bieten: bei Dach, Wand, Fassade und Boden.

Dach

Das Dach ist das meist beanspruchte Bauteil eines Gebäudes. Gedämmt mit PAVATEX erfüllt es mehrere Funktionen: Schutz gegen Regen, Kälte, Hitze und das ganze Jahr optimalen Schallschutz.

Wichtigste Dachprodukte:

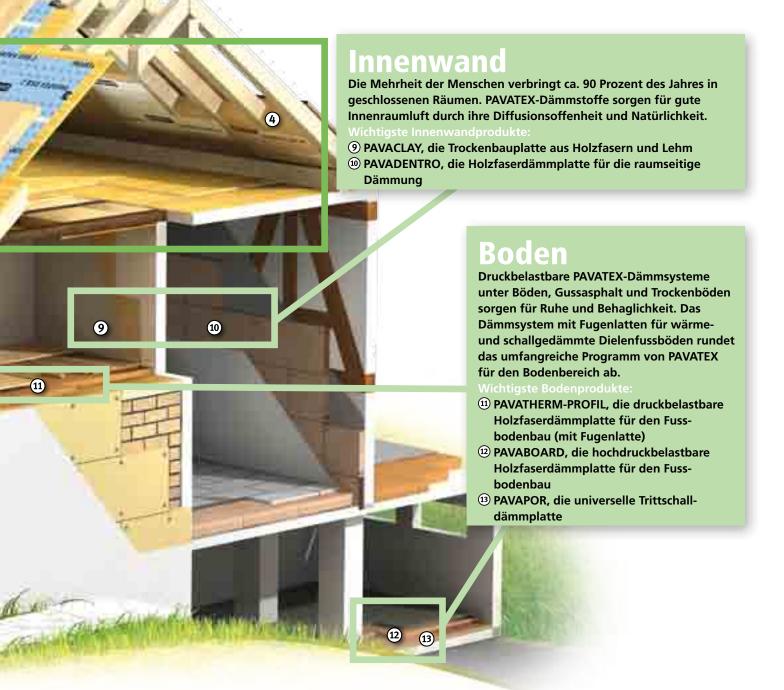
- 1 ISOROOF, die Unterdachplatte für das Dach
- 2 PAVATHERM, die Holzfaserdämmplatte für das Dach
- 3 PAVATHERM-PLUS, das Dämmelement für das Dach
- PAVAFLEX, der flexible Holzfaserdämmstoff für das Dach

Aussenwand

Die Aussenwand muss die Bewohner vor äusseren Einflüssen schützen. Ob Putz- oder Vorhangfassade, die massiven Dämmstoffe von PAVATEX bilden immer eine schützende Hülle für mehr Wohnqualität im ganzen Haus.

Wichtigste Aussenwandprodukte:

- ⑤ PAVATEX DIFFUTHERM für WDVS, die Holzfaserdämmplatte für Wärmedämmverbundsysteme
- **6** ISOROOF, die Dämmplatte für die Wand
- 7 PAVATHERM-PLUS, das Dämmelement für die Wand
- 8 PAVAFLEX, der flexible Holzfaserdämmstoff für die Wand



PAVATEX setzt mit seinen Holzfaserdämmstoffen neue Massstäbe im Markt der ökologischen Dämmstoffe. Als multifunktionale Gebäudehülle bewältigen sie jede dämmtechnische Herausforderung wie Schutz vor Kälte, Hitze und Schall. PAVATEX-Produkte bieten gleichzeitig Sicherheit bei Brandschutz und Baubiologie.

Ob Neubau oder Sanierung, ob Boden, Dach oder Wand: PAVATEX-Dämmstoffe lassen sich im gesamten Haus äus-

serst vielfältig einsetzen und haben sich millionenfach bewährt. Geprüfte Konstruktionen und gesicherte technische Werte bieten Bauherren und Verarbeitern ein Höchstmass an Sicherheit.

PAVATEX-Dämmstoffe tragen zur dauerhaften Wertsteigerung jedes Hauses bei. Sie schützen es vor Witterungseinflüssen, senken die Energiekosten und sorgen für idealen Wohnkomfort.

ISOROOF-NATUR

Kurzprofil

- 3 Monate Bauzeitabdichtung gemäss SIA 232.
- Unterdachsystem mit Dämmplatten aus naturbelassenen Holzfasern, vergütet mit kautschukähnlichem Zusatz.
- Dampfdurchlässig und feuchteausgleichend.
- Hervorragender sommerlicher Hitzeschutz durch hohe Wärmespeicherungskapazität.
- Spürbar verbesserter Schallschutz durch poröse Plattenstruktur und hohes Flächengewicht.

Technische Daten

Eigenschaft	Einheit	Wert
Holzfaserdämmplatte		EN 13171 EN 622-4
DIBt-Zulassung		Z-23.15-1429
Wärmeleitfähigkeit λ _D	W/(m K)	0,047
Rohdichte	kg/m³	240
Spez. Wärmekapazität	J/kgK	2.100
Diffusionswiderstand	μ	5
Druckspannung bei 10% Stauchung	kPa	200 (22 mm) 175 (35 - 60 mm)
Brandkennziffer		4.3
Euroklasse EN 13501-1		Е

Lieferform

Ausführung	Einheit	Wert
Breite	cm	77
Länge	cm	250
Dicke	mm	22, 35, 52, 60
Kante 18, 22, 35	-	Nut+Kamm umlaufend
Kante 52, 60 Inhaltsstoff	- Fe	Nut+Kamm umlaufend (neues Profil)
Schweizer Nadelh Zusatzstoffe:	olz	91,8 %
Latex		5,0 %
Paraffin		1,2 %
Weissleim		2,0 %
(PVAc zur Schichtenver	klebung bei 3	5, 52 und 60 mm).

PAVATHERM-PLUS

Kurzprofil

- 3 Monate Bauzeitabdichtung gemäss SIA 232.
- Bewährte Kombination aus PAVATHERM und ISOROOF-NATUR.
- Diffusionsoffener, dauerhafter Feuchteschutz für tragende Konstruktionen.
- Hervorragender sommerlicher Hitzeschutz durch hohe Wärmespeicherung.
- Spürbar verbesserter Schallschutz durch poröse Plattenstruktur und hohes Flächengewicht.
- Bauökologisch zertifiziert durch natureplus®.

Technische Daten

Eigenschaft	Einheit	Wert
Holzfaserdämmplatte		EN 13171
DIBt-Zulassung		Z-23.15-1429
Wärmeleitfähigkeit λ _D	W/(m K)	0,043
Rohdichte	kg/m³	180
Spez. Wärmekapazität	J/kgK	2.100
Diffusionswiderstand µ		5
Druckspannung bei 10% Stauchung	kPa	100
Brandkennziffer		4.3
Euroklasse EN 13501-1		E

Ausführung	Wert
Länge x Breite (Dicke 60-120 mm) (Dicke 60 - 160 mm)	158 x 78 cm 178 x 56 cm
Dicke	60, 80, 100, 120, 140, 160 mm
Kante	Nut+Kamm umlaufend
Inhaltsstoffe	
Schweizer Nadelholz Zusatzstoffe:	96.3 %
Latex	2,0 %
Paraffin	1,2 %
Weissleim (PVAc zur Schie	chtverklebung) 2,5 %

2,0 %

PAVATHERM-COMBI

Kurzprofil

- Systemlösung für PAVATHERM-PLUS in grösseren Dämmdicken.
- Gleiches Format wie PAVATHERM-PLUS, Direktverlegung auf den Sparren.
- Einfaches Handling durch Gewichtreduktion.
- Hervorragender sommerlicher Hitzeschutz durch hohe Wärmespeicherung.
- Schützt Holzkonstruktionen vor Temperatureinflüssen.
- Diffusionsoffener, dauerhafter Feuchteschutz für tragende Konstruktionen.

Technische Daten

Eigenschaft	Einheit	Wert
Holzfaserdämmplatte		EN 13171
DIBt-Zulassung		Z-23.15-1429
Wärmeleitfähigkeit λ_{D}	W/(m K)	0,043
Rohdichte	kg/m³	175
Spez. Wärmekapazität	J/kgK	2.100
Diffusionswiderstand	μ	5
Druckspannung bei 10% Stauchung	kPa	70
Baustoffklasse DIN 4102-1		B2
Euroklasse EN 13501-1		Е

Lieferform

Ausführung	Wert
Länge x Breite (Deckmass)	178 x 56 cm
Dicke	80 mm
Kante	Nut+Kamm umlaufend
Inhaltsstoffe	
Schweizer Nadelholz Zusatzstoffe:	96,0 %
Paraffin	0,5 %
Stärke	1.5 %

Weissleim (PVAc zur Schichtenverklebung)
Für PAVATHERM liegt ein Gutachten zur
Kompostierbarkeit vor.

PAVATHERM

Kurzprofil

- Für optimalen Wärme-, Hitze-, Schall- und Brandschutz.
- Spürbar verbesserter Schallschutz durch poröse Plattenstruktur und hohes Flächengewicht.
- Hervorragender sommerlicher Hitzeschutz durch hohe Wärmespeicherungskapazität.
- Dämmstark gegen Heizenergieverluste.
- Diffusionsoffen und sorptionsfähig für ein angenehmes Wohnklima.
- Baubiologisch zertifiziert durch natureplus® und güteüberwachter Qualitätsdämmstoff.
- Öko-Test Note "sehr gut".

Technische Daten

Eigenschaft	Einheit	Wert
Holzfaserdämmplatte		EN 13171
DIBt-Zulassung		Z-23.15-1429
Wärmeleitfähigkeit λ _n	W/(m K)	0,038
Rohdichte	kg/m³	140
Spez. Wärmekapazität	J/kgK	2.100
Diffusionswiderstand	μ	5
Druckspannung bei 10% Stauchung	kPa	20
Baustoffklasse DIN 4102-1		B2
Euroklasse EN 13501-1		E

Lieferform

Ausführung	Einheit	Wert
Formate	cm	60 x 102
	cm	120 x 205
Dicke	mm	30 - 160
Kante	-	stumpf

Inhaltsstoffe

Schweizer Nadelholz	97,0 %
Zusatzstoffe:	
Paraffin	0,5 %
Weissleim (PVAc zur Schichtenverklebung)	2,5 %

Für PAVATHERM liegt ein Gutachten zur Kompostierbarkeit vor.

PAVATHERM-FORTE

Kurzprofil

- Hohe Dämmwirkung für maximale Energieeinsparung.
- Druckfeste und formbeständige Plattenstruktur.
- Sichere Befestigungstechnik mit bauaufsichtlich zugelassenen Schrauben.
- Spürbar verbesserter Schallschutz durch poröse Plattenstruktur und hohes Flächengewicht.
- Hervorragender sommerlicher Hitzeschutz durch hohe Wärmespeicherungskapazität.
- Diffusionsoffen und sorptionsfähig für ein angenehmes Wohnklima.
- Bauökologisch zertifiziert durch natureplus[®].

Technische Daten

Eigenschaft	Einheit	Wert
Holzfaserdämmplatte		EN 13171
DIBt-Zulassung		Z-23.15-1429
Wärmeleitfähigkeit λ_{D}	W/(m K)	0,043
Rohdichte	kg/m³	175
Spez. Wärmekapazität	J/kgK	2.100
Diffusionswiderstand	μ	5
Druckspannung bei 10% Stauchung	kPa	70
Baustoffklasse DIN 4102-1		B2
Euroklasse EN 13501-1		Е

Lieferform

Ausführung	Einheit	Wert	
Breite	cm	60	
Länge	cm	102	
Dicke	mm	80, 100	
Kante	-	stumpf	
Inhaltsstoffe			

Schweizer Nadelholz	93,1 %
Zusatzstoffe:	
Paraffin	1,2 %
Stärke	2,5 %
Weissleim (PVAc zur Schichtenverklebung)	3,2 %

Für PAVATHERM liegt ein Gutachten zur Kompostierbarkeit vor.

PAVAFLOC

Neues Produkt

Kurzprofil

- Einfache, passgenaue Füllung von Hohlräumen
- Zeit- und Kostenersparnis, da vorhandene Konstruktionen nur stellenweise geöffnet werden müssen
- Zu- und verschnittfreie Verarbeitung
- Ökologisch und ökonomisch unerreicht bei grossen Dämmstärken
- Dauerhaft setzungssicher
- Diffusionsoffen, sorptionsfähing und feuchteregulierend
- Recycling-Produkt energiearme Herstellung

Technische Daten

Eigenschaft	Einheit	Wert
Wärmeleitfähigkeit λ_{D}	W/(m K)	0,039
Einbaudichte lt. Zulassung frei aufliegend	kg/m³	28 - 40
Einbaudichte lt. Zulassung raumfüllend	kg/m³	38 - 65
Spez. Wärmekapazität	J/kgK	2.110
Diffusionswiderstand	μ	1
Setzmass freiliegend 28 kg/m³	%	max. 8
Setzmass raumfüllend 38 kg/m3	%	0
Brandkennziffer (BKZ)		5.3
Euroklasse EN 13501-1		Е

Lieferform

Ausführung	Einheit	Wert
Sackformat	mm	800 x 400 x 340
Gewicht	Kg	12.5

Inhaltsstoffe

Zellulosefaser 92.5 % Brand- und Fungizidschutz: Borsäure und Borpentahydrat oder Ammoniumphosphat

PAVISO

Kurzprofil

- Wasserdichte Oberfläche.
- Keil/Nut-Verbindung, Fugen abgedeckt (Norm SIA 232).
- Trittsicher und begehbar (SUVA-Bescheinigung Nr. 6025/1).
- Dämmstarke, poröse Unterseite.
- Schnelle, sparrenunabhängige Verlegung und geringer Verschnitt.

ECENFB.

Technische Daten

Eigenschaft	Einheit	Wert
Wärmeleitfähigkeit $\lambda_{_{D}}$	W/(m K)	0,057
Rohdichte	kg/m³	950 und 240
Spez. Wärmekapazität	J/kgK	2.100
Diffusionswiderstand	μ	5 (für Dämmplatte)
s _d -Wert	m	0.48 und 0.09
Brandkennziffer		4.3
Euroklasse EN 13501-1		E

Lieferform

Ausführung	Einheit	Wert
Breite	cm	64
Länge	cm	205
Dicke	mm	22
Kante	-	PAVISO-System

Inhaltsstoffe

Nadelholz	94,3 %
Zusatzstoffe:	
Latex	2,5 %
Paraffin	1,2 %
Stärke	1,5 %
Weissleim (zur Schichtenverklebung)	0,5 %

Unterdach-KN bituminiert

Kurzprofil

- Bitumen vergütete Unterdachplatte
- Poröse Plattenstruktur ermöglicht Dampfdurchlass und Feuchteausgleich
- Kein Durchlüftungsraum zwischen Unterdach und Dämmschicht erforderlich
- Für einfach belüftete Dachkonstruktionen gemäss SIA 232

Technische Daten

Eigenschaft	Einheit	Wert
DIBt-Zulassung		Z-23.15-1429
Wärmeleitfähigkeit λ _n	W/(m K)	0,049
Rohdichte	kg/m³	240
Spez. Wärmekapazität	J/kgK	2.100
Diffusionswiderstand	μ	5
Druckspannung bei 10% Stauchung	kPa	100
Brandkennziffer		4.3
Euroklasse EN 13501-1		E

Lieferform

Ausführung	Einheit	Wert
Breite	cm	77
Länge	cm	252
Dicke	mm	24
Kante	-	KN (Keilnut)

Inhaltsstoffe

94,5 %
4,5 %
1,0 %

PAVATHERM-PROFIL

Kurzprofil

- Hohe Dämmwirkung für maximale Energieeinsparung
- Hervorragende Lösung als raumseitige Zusatzdämmung von Dächern
- Druckfeste und formbeständige Plattenstruktur mit Nut und Kamm
- Geprüfte Deckenbauteile hinsichtlich Schallschutz und Belastbarkeit
- Diffusionsoffen und sorptionsfähig für ein angenehmer Wohnklima

Technische Daten

Eigenschaft	Einheit	Wert
Holzfaserdämmplatte		EN 13171
DIBt-Zulassung		Z-23.15-1429
Wärmeleitfähigkeit λ _p	W/(m K)	0,043
Rohdichte	kg/m³	175
Spez. Wärmekapazität	J/kgK	2.100
Diffusionswiderstand	μ	5
Druckspannung bei 10% Stauchung	kPa	70
Brandkennziffer		4.3
Euroklasse EN 13501-1		Е

Lieferform

Ausführung	Einheit	Wert
Breite	cm	40, 60
Länge	cm	102
Dicke	mm	40, 60
Kante	-	NK (Nut & Kamm)

Inhaltsstoffe

Schweizer Nadelholz Zusatzstoffe:	96,0 %
Paraffin	0,5 %
Weissleim (Verbindung einzelner Schichten) Stärke	1.5 % 2.0 %

PAVAFLEX

Kurzprofil

- Hohe Dämmwirkung
- Verbesserter sommerlicher Hitzeschutz durch mehr Masse
- Bessere Feuchtespeicherung
- Flexibler und leicht zwischen die Konstruktion einpassbarer Holzfaserdämmstoff
- Fugenfreie Anpassung an angrenzende Bauteile
- Mit einfachen Schneidewerkzeugen bearbeitbar
- Gesundheitlich und ökologisch unbedenklich

Technische Daten

Eigenschaft	Einheit	Wert
Holzfaserdämmplatte		EN 13171
DIBt-Zulassung		Z-23.15-1417
Wärmeleitfähigkeit λ_{D}	W/(m K)	0,038
Rohdichte	kg/m³	55
Spez. Wärmekapazität	J/kgK	2.100
Diffusionswiderstand	μ	5
Brandkennziffer		4.3
Euroklasse EN 13501-1		E

Lieferform

Ausführung	Einheit	Wert
Breite	cm	57,5
Länge	cm	135
Dicke	mm	30 - 240
Kante	-	stumpf

Inhaltsstoffe

Nadelholz	84 %
Zusatzstoffe:	
Bindefasern (Polyolefin)	8 %
Brandschutzmittel	8 %

PAVAROOF-W PLUS

Kurzprofil

- Trittsicheres, begehbares Unterdach
- Hohe Verlegeleistung, mit Eckschnitt
- Unterdach für normale Beanspruchung gemäss SIA 232
- Frei bewitterbar gemäss SIA 232
- Einfach belüftetes Dach hohlraumfrei dämmbar gemäss SIA 232

UCENFB.

Technische Daten

Eigenschaft	Einheit	Wert
Holzfaserdämmplatte		EN 13 171 EN 13 986
Wärmeleitfähigkeit λ _n	W/(m K)	0,08
Gewicht	kg/m²	6,4
Spez. Wärmekapazität	J/kgK	2.100
Diffusionswiderstand	μ	40
s _d -Wert	m	0.32
Brandkennziffer		4.3
Euroklasse EN 3806		D

Lieferform

Ausführung	Einheit	Wert
Breite	cm	107
Länge	cm	215, 262, 300
Dicke	mm	8
Kante	-	stumpf

PAVAROOF-K

Kurzprofil

- hohe Verlegeleistung (Eckenschnitte)
- direkter Wasserlauf von First bis Traufe
- abgestimmt auf die Anforderungen zweifach belüfteter Dachkonstruktionen
- behagliches Wohnklima hergestellt aus 100% Nadelholz

UCENFB Natural FiberBoard

Technische Daten

Eigenschaft	Einheit	Wert
Holzfaserdämmplatte		EN 13 171 EN 13 986
Wärmeleitfähigkeit λ _D	W/(m K)	0,17
Gewicht	kg/m²	4,3
Spez. Wärmekapazität	J/kgK	2.100
Diffusionswiderstand	μ	122
s _d -Wert	m	0.55
Brandkennziffer		4.3
Euroklasse EN 3806		D

Ausführung	Einheit	Wert
Breite	cm	107
Länge	cm	215, 262, 300
Dicke	mm	4,5
Kante	-	stumpf

PAVATEX LDB 0.02

Kurzprofil

- Diffusionsoffene Luftdichtbahn mit wechselseitig integrierten Selbstklebestreifen.
- Zeitersparnis durch einfache Verlegung.
- Mit wechselseitig integrierten Selbstklebestreifen.
- Geprüfte Luftdichtbahn.
- Auch als Schalungsbahn im Vordachbereich einsetzbar.

Technische Daten

Wert
0,72 mm
28
0,02 m
180 g/m²

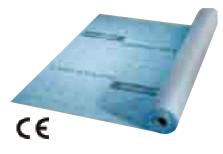
Lieferform

Ausführung	Wert
Rollenbreite	1,5 m
Rollenlänge	50 m
Rollenfläche	75 m ²

PAVATEX ADB

Kurzprofil

- Diffusionsoffene Unterdeckbahn mit wechselseitig integrierten Selbstklebestreifen.
- Auch als Schalungsbahn im Vordachbereich einsetzbar.
- Wind, wasser- und Schlagregendicht.
- 3 Monate frei bewitterbar.
- Unterdach für erhöhte Beanspruchung gem. SIA 232.


Technische Daten

Eigenschaft	Wert	
Dicke	0,62 mm	
Diffusionswiderstandszahl µ	55	
s _d -Wert	0,03 m	
Flächengewicht	180 g/m²	

Lieferform

Ausführung	Wert
Rollenbreite	1,5 m und 2,8 m
Rollenlänge	50 m und 25 m
Rollenfläche	75 m ² und 70 m ²

PAVATEX DSB 2

Kurzprofil

- Dachschalungsbahn.
- Rutschhemmende Oberfläche.
- Transluzent.
- Neue Schneidehilfe.
- 4 Wochen frei bewitterbar.

Technische Daten

Eigenschaft	Wert
Dicke	0,66 mm
Diffusionswiderstandszahl µ	3'030
s _d -Wert	2 m
Flächengewicht	110 g/m ²

Ausführung	Wert
Rollenbreite	1,5 m
Rollenlänge	50 m
Rollenfläche	75 m ²

PAVATEX DB 3.5

Kurzprofil

- Dampfbremsbahn.
- Leicht und formstabil.
- Reissfest und geschmeidig.
- Transluzent.
- Neue Schneidehilfe.

Technische Daten

Eigenschaft	Wert
Dicke	0,43 mm
Diffusionswiderstandszahl µ	7′000
s _d -Wert	3,5 m
Flächengewicht	110 g/m ²

Lieferform

Ausführung	Wert
Rollenbreite	1,5 m
Rollenlänge	50 m
Rollenfläche	75 m ²

PAVATEX DB 28

Kurzprofil

- Dampfbremsbahn.
- Leicht und formstabil.
- Reissfest und geschmeidig.
- Transluzent.
- Neue Schneidehilfe.

Technische Daten

Eigenschaft	Wert
Dicke	0,48 mm
Diffusionswiderstandszahl µ	58'000
s _d -Wert	28 m
Flächengewicht	110 g/m ²

Ausführung	Wert
Rollenbreite	1,5 m
Rollenlänge	50 m
Rollenfläche	75 m ²
3	5.0

PAVACOLL 310 / 600

Kurzprofil

- Lösemittelfreier Klebstoff zum Abdichten von PAVATEX-Platten und -Bahnen.
- Drei Anwendungen in einer.
- Haftet auch auf feuchten Oberflächen.
- In Schlauchbeutel und Kartusche mit Mehrfachdüse erhältlich.

Technische Daten

Eigenschaft	Wert
Material	1 K Polyurethan Kleb-
	stoff, lösemittelfrei
Lagerung	Kühl und trocken
Haltbarkeit	12 Monate ungeöffnet

Lieferform

Ausführung	Wert
Kartusche	310 ml/443 g
Schlauchbeutel	600 ml/858 g
Kartoninhalt	12 Kartuschen /
	10 Schlauchbeutel

PAVAPRIM

Kurzprofil

- Lösemittelfreier Primer für PAVATAPE und PAVAFIX 60.
- Auch bei tiefen Temperaturen bis -10 °C (Luft & Untergrund) verarbeitbar.
- Selbstklebend.
- starke Tiefenwirkung.

Technische Daten

Eigenschaft	Wert
Material	Wässrige Acrylat-Polymer- dispersion, lösemittelfrei
Lagerung	Kühl (frostfrei) und trocken
Haltbarkeit	24 Monate ungeöffnet

Lieferform

Ausführung	Wert
Dose	1
Kartoninhalt	6 Dosen
Kartoninnait	6 Dosen

PAVABASE

Kurzprofil

- Lösemittelfreier Haftgrund für PAVATAPE und PAVAFIX 60.
- Im 5 Liter Gebinde.
- Grundierte Stelle gut sichtbar.
- Reinigung im flüssigen Zustand mit Wasser.

Technische Daten

Eigenschaft	Wert
Material	Wässrige Bitumenemulsion, lösemittelfrei
Lagerung	Kühl (frostfrei) und trocken
Haltbarkeit	15 Monate ungeöffnet

Ausführung	Wert
Kübel	5 l

PAVATAPE 75 / 150

Kurzprofil

- Butylkautschukband zum Abdichten von PAVATEX-Platten.
- Dauerhalft UV-Stabil durch Alu-Kaschierung.
- Hohe Klebkraft.
- Lösemittel- und bitumenfrei.
- Reisfeste Alufolie, unlösbar kaschiert.

Technische Daten

Eigenschaft	Wert
Material	Butylkautschuk mit Alu-
	miniumträger
Dicke	0,8 mm
Lagerung	Kühl und trocken

Lieferform

Ausführung	Wert
Rollenbreite	75/150 mm
Rollenlänge	15 m
Kartoninhalt 75 / 150 mm	6 / 4 Rollen

PAVATAPE 20

Kurzprofil

- Doppelseitiges Butylkautschukband zum Abdichten von PAVATEX-Bahnen im Innen- und Aussenbereich.
- Doppelseitig hohe Klebkraft.
- Keine Überdehnung durch Fadeneinlage.
- Geeignet für glatte bis raue Oberflächen.
- Hohe Alterungsbeständigkeit.

Technische Daten

Eigenschaft	Wert
Material	Doppelseitiges Butylkaut- schukband mit Fadeneinlage
Dicke	1,5 mm
Lagerung	Kühl und trocken

Lieferform

Ausführung	Wert
Rollenbreite	20 mm
Rollenlänge	20 m
Kartoninhalt	10 Rollen

PAVATAPE FLEX

Kurzprofil

- Dehnbares Butylkautschukband zum Abdichten von PAVATEX-Platten und -Bahnen an Durchdringungen.
- Hohe Alterungsbeständigkeit.
- Flexibel und geschmeidig, keine Faltenbildung.
- Dreidimensional formbar.
- Kann Bewegungen der Bauteile aufnehmen.

Technische Daten

Eigenschaft	Wert
Material	Butylkautschuk mit dehnbarem Folienträger
Dicke	2 mm
Lagerung	Kühl und trocken

Ausführung	Wert
Rollenbreite	80 mm
Rollenlänge	5 m
Kartoninhalt	8 Rollen

PAVAFIX 60

Kurzprofil

- Acrylklebeband zum Abdichten von PAVATEX-Bahnen im Innen- und Aussenbereich.
- Witterungsbeständiger Kunststoffträger.
- Hohe Klebkraft.
- Formstabil, keine Überdehnung des Bandes möglich.
- Von Hand reissbar.

Technische Daten

Eigenschaft	Wert
Material	Rein-Acrylatkleber auf
	Kunststoffträger
Dicke	0,3 mm
Lagerung	Kühl und trocken

Lieferform

Ausführung	Wert
Rollenbreite	60 mm
Rollenlänge	25 m
Kartoninhalt	4 Rollen

PAVAFIX SN BAND

Kurzprofil

- Schrauben und- Nageldichtungsband für PAVATEX ADB.
- Hohe Resistenz gegen UV und Witterung.
- Hohes Raumgewicht für absolute Dichtheit.
- Einfache Montage.

Technische Daten

Eigenschaft	Wert
Material	Kunststoffschaum mit Acrylatkleber
Dicke	3 mm
Lagerung	Kühl und trocken

Ausführung	Wert
Breite	55 mm
Rolle	30 m
Kartoninhalt	9 Rollen

Sägeblätter für Holzfaserdämmplatten

Kurzprofil

• Mit speziellen Wellenschliff zum Schneiden der Holzfaserplatten. Passend für alle gängigen Fabrikate (Bosch, AEG, ELU, Festo, Metabo, Makita, usw.).

Lieferform

Ausführung	Wert
Länge für Stichsäge	152 mm
Länge für Säbelsäge	225 mm

Dämmstoffmesser für PAVAFLEX

Kurzprofil

• Spezielles Messer zum Schneiden von PAVAFLEX.

Lieferform

Ausführung	Wert
Länge	300 mm

Anpressrolle gross

Kurzprofil

• Zum Aufrollen mit hohem Druck für alle PAVATEX-Klebebänder.

Ausführung	Wert
Material	Metallrolle
Länge	1115 mm
Breite	80 mm

Wichtigste Änderungen für PAVATEX-Unterdachsysteme

Wesentliche Änderungen für PAVATEX-Unterdachsysteme in Anlehnung an die Norm SIA 232-2011 im Überblick:

- Alle Unterdächer ab einer Bezugshöhe von 800 m erfordern ein Unterdach für ausserordentliche Beanspruchung.
- Die Norm erlaubt Abweichungen, die allerdings durch Versuche des Herstellers zu belegen sind
- Bei Warmdächern kommen immer feuchtepuffernde Unterdächer zum Einsatz.
 Unterdachbahnen müssen immer auf eine feuchtepufferde Unterlage, z.B. Holzfaserplatten, verlegt werden.
- Bauteile, die der freien Bewitterung ausgesetzt sind, müssen nur 1 Monat dicht sein. Bauzeitabdichtungen (für PAVATEX Unterdächer 3 Monate) müssen den spezifischen Anforderungen gerecht werden.
- Unterdächer unter Solaranlagen müssen eine Hitzebeständigkeit bis 80 Grad aufweisen.

Beanspruchungsgruppen und Anforderungen nach SIA 232

Unterdach für normale Beanspruchung

Anforderung: Muss für frei abfliessendes Wasser dicht sein.

Unterdach für erhöhte Beanspruchung

Anforderung: Muss für Stauwasser bis 50 mm dicht sein.

Unterdach für ausserordentliche Beanspruchung

Anforderung: Für ausserordentliche Beanspruchung müssen Unterdachsysteme und – Materialien gegen den zu erwartenden hohen Wasserdruck (Stauhöhe > 50 mm) dicht sein.

Beanspruchungsgruppen mit PAVATEX-Unterdachsystemen

Untenstehende Tabelle zeigt, welches PAVATEX-Unterdachsystem in Abhängigkeit von Dachneigung und Bezugshöhe neu als Unterdach für normale, erhöhte oder ausserordentliche Beanspruchung eingesetzt werden kann:

Luftdichtung Norm SIA 180/232

Wärmegedämmte geneigte Dächer müssen luftdicht sein. Die Luftdichtung kann zum Beispiel in Form einer Dampfbremse eingesetzt werden. Hohlräume zwischen Luftdichtung und Wärmedämmung, die eine Konvektion ermöglichen, sind nicht zulässig.

Der Diffusionswiderstand der Luftdichtung/Dampfbremse ist in Abhängigkeit der Konstruktion, der verwendeten Materialien und der Feuchtebelastung aus dem Innenund Aussenklima zu bemessen. Der Feuchtegehalt der eingebauten Materialien und die zu erwartenden Auffeuchtungen sind bei der Beurteilung des Diffusionsverhaltens zu berücksichtigen.

Kombination von Dachsystemen

Kombinationen von einfach belüfteten- mit zweifach belüfteten Dachaufbauten sind zu unterlassen, da sie zu bauphysikalischen Problemen führen können.

Beispiel: Wohnräume unter Dachflächen mit einfach belüfteter Dachkonstruktion und unbeheiztem Giebelraum mit zweifach belüfteter Dachkonstruktion.

	Dachneigung in Grad	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	4
																																					L
	Pavaroof-K														≤ 8	00	m																				
	Pavaroof-W														≤ 8	00	m																				Г
	Paviso														≤ 8	00	m																				
	Unterdach-bitum 24mm														≤ 8	00	m																				
ab- Ing	Isoroof 22mm														≤ 8	00	m																				
Fugenab- dichtung	Isoroof 35, 52, 60mm											≤ 8	00 ı	m																							
를 ^표 등	Pavatherm-Plus 60-160mm											≤ 8	00 ı	m																							
	Unterdach-bitum 24mm														≤ 8	00	m																				I
ab- Ing	Isoroof 22mm														≤ 8	00	m																				
Fugenab- dichtung	Isoroof 35, 52, 60mm											≤ 8	00 ı	m																							
Fuge dich	Pavatherm-Plus 60-160mm											≤ 8	00 ı	m																							
																																					I
	Pavatherm-Combi mit ADB											≤ 8	00 ı	m																							I
	ADB normal verklebt **											≤ 8	00 ı	m																							
																																					Ī
	ADB mit Pavacoll verklebt **	*					kei	ne	Höh	enl	beg	ren	zun	g																							١,

- * Für Kleinflächen bis 10 m² wie z.B. Lukarnen, Bahn paralell zum First verlegt ohne Bahnenstösse auf der Kleinfläche
- ** Auf Isoroof 35, 52, 60mm oder Pavatherm-Plus verlegt

keine Klassifizierung
Unterdach für normale Beanspruchung
Unterdach für erhöhte Beanspruchung
Unterdach für ausserordentliche Beanspruchung

Mindestneigung in Abhängigkeit von Deckung und Unterdach

Untenstehende Tabelle dient als Entscheidungsgrundlage für Unterdachsysteme. Sie ist nicht abschliessend und basiert auf häufig verwendeten Materialien.

Sie gilt für:

- Sparrenlängen bis 8,00 m
- Bezugshöhe 800 m

Des Weiteren ist zu beachten:

- Der Einsatz der Deckungsmaterialien ist höhenabhängig. Bei Bezugshöhen über 800 m sind die örtlichen und klimatischen Bedingungen objektbezogen zu berücksichtigen.
- Bei klimatischen Verhältnissen, die Rückschwellwasser erwarten lassen, ist mindestens ein Unterdach für erhöhte Anforderung einzusetzen.
- Bei klimatischen Bedingungen, die über längere Zeit Rückschwellwasser und Eisbildung auf dem Unterdach erwarten lassen, ist mindestens ein Unterdach für ausserordentliche Beanspruchung einzusetzen.

Deckung		Unterdach für ausserordentliche Beanspruchung	Unterdach für erhöhte Beanspruchung	Unterdach für normale Beanspruchung
Dachziegel >12 Stk/m²	Flach-, Glatt, Herz- und Muldenfalz	10 bis <18	18 bis <20	≥20
	Pfannen	8 bis <16	16 bis <18	≥18
	Biberschwanz	15 bis <25	25 bis <30	≥30
	Falzbiber	25 bis <30	≥30	≥30
Dachziegel ≤ 12 Stk/m²	Flach- und Muldenfalz	10 bis <20	≥20	≥20
	Glattfalz	12 bis <30	≥30	≥30
	Pfannen	8 bis <20	≥20	≥20
Dachstein aus Beton	Grossflächenziegel	10 bis <18	18 bis <25	≥25
	Pfannen- und Glattziegel	15 bis <20	20 bis <30	≥30
Faserzement	Ebene Grossformat-Dachplatte	6 bis <15	15 bis <18	≥18
	DS Doppeldeckung 720/600/480	-	-	≥18
	DS Doppeldeckung 400	-	15 bis <18	≥18
	DS Einfachdeckung	-	-	≥30
	Wellplatten OP57/36	8 bis <15	15 bis <18	≥18
	Kurzwellplatten	11 bis <15	15 bis <18	≥18
Naturschiefer	Doppeldeckung 120 mm Überdeckung	-	15 bis <18	≥18
	Doppeldeckung 100 mm Überdeckung	-	-	≥18
Blechplatten	Dachplatte	10 bis <20	20 bis <25	≥25
	Dachschindeln	-	-	≥25
Profilbleche	Profilhöhe 35-80 mm	3 bis <15	15 bis <18	≥18
Blechbahnen mit Falzen	Doppelstehfalz Falzhöhe 23 mm	3 bis <15	15 bis <18	≥18
	Winkelstehfalz	-	-	≥25
	Leistenfalz mit Kapillarunterbruch Falz- höhe 40 mm	3 bis <15	15 bis <18	≥18

Quelle: SIA 232-1 2011

Anforderungen an den U-Wert der Konstruktion

Mustervorschriften der Kantone im Energiebereich (MuKEn)

An der Frühlingsversammlung vom 4. April 2008 hat die EnDK die totalrevidierten "Mustervorschriften der Kantone im Energiebereich" (MuKEn) verabschiedet. Damit haben die Kantone einen weiteren grossen, konkreten und harmonisierten Schritt zur Reduktion des Energieverbrauchs im Gebäudebereich getan.

Künftig soll ein nach dem Basismodul der Musterverordnung realisierter Neubau nur noch 4,8 Liter Heizöl-Äquivalente an Wärmeenergie verbrauchen, umfassend sanierte Gebäude rund 9 Liter Heizöl-Äquivalente. Damit nähern sich die Verbrauchslimiten den bisherigen, bis 2007 gegoltenen MINERGIE®-Anforderungen an. Die Verbrauchsvorgaben sind dadurch seit 1975 um über 75% gesenkt worden.

Der MINERGIE®-Standard

Der MINERGIE®-Standard ist ein freiwilliger Baustandard, der den rationellen Energieeinsatz und die breite Nutzung erneuerbarer Energien bei gleichzeitiger Verbesserung der Lebensqualität, Sicherung der Konkurrenzfähigkeit und Senkung der Umweltbelastung ermöglicht.

Die folgenden Anforderungen müssen eingehalten werden:

- Primäranforderung an die Gebäudehülle
- Lufterneuerung mittels einer Komfortlüftung
- MINERGIE®-Grenzwert (gewichtete Energiekennzahl)
- Nachweis über den thermischen Komfort im Sommer
- Zusatzanforderungen, je nach Gebäudekategorie betreffend Beleuchtung, gewerbliche Kälte und Wärmeerzeugung
- Begrenzung der Mehrkosten gegenüber konventionellen Vergleichsobjekten auf maximal 10%

Der "Gebäudeenergieausweis der Kantone" (GEAK®)

Er zeigt auf, wie viel Energie ein Gebäude im Normbetrieb benötigt. Dieser Energiebedarf wird in Klassen von A bis G in einer Energieetikette angezeigt. Damit ist eine Beurteilung der energetischen Qualität möglich, die im Hinblick auf zu erwartende Energiekosten und Komfort mehr Transparenz für Kauf- und Mietentscheide schafft. Zusätzlich zeigt der GEAK® auch das energetische Verbesserungspotential von Gebäudetechnik und Gebäudehülle, ähnlich einem energetischen Grobkonzept auf, und bildet die Grundlage für die Planung von baulichen und gebäudetechnischen Verbesserungsmassnahmen.

Anforderungen an den U-Wert:

Anforderung MuKEn:

Neubau ≤ 0.20
 Sanierung ≤ 0.25

Anforderung Minergie:

Neubau ≤ 0.15
 Sanierung ≤ 0.20

Erfahren Sie mehr über mögliche Fördergelder:

www.gebaeudeprogramm.ch www.foerderdata.ch

Ausschreibungstexte

Unsere aktuellen Ausschreibungstexte finden Sie unter:

http://www.PAVATEX.ch/ausschreibungstexte.aspx

Für Fragen wählen ganz einfach unsere Gratishotline unter: 0800-Dämmen (0800-326636).

Bauphysikalische Eigenschaften

Ziel eines guten sommerlichen Hitzeschutzes ist es, die Aussenwärme so lange wie möglich im Dach bzw. in den Wänden zu speichern, damit sie nur langsam und mit verringerter Temperatur in die Innenräume gelangt. Wärmespeichernde Dämmstoffe können die Mittagshitze auffangen und abpuffern. Holzfaserdämmstoffe erfüllen diese Kriterien besser als ihre Substitute aus Mineralwolle, Hartschaum oder Cellulosefasern.

Die Wahl geeigneter Bau- und Dämmstoffe und die Anwendung von zweckmässigen Konstruktionen wirken sich demnach sowohl auf die Phasenverschiebung als auch auf die Amplitudendämpfung aus.

Um optimale Werte bei beiden Richtgrössen zu erreichen, sollen sich die verwendeten Wärmedämmmaterialien durch eine hohe Masse und eine hohe Wärmespeicherfähigkeit, bei gleichzeitig niedriger Wärmeleitzahl, auszeichnen. Aus Holzfasern hergestellte Wärmedämmstoffe, so z.B. auch PAVATHERM, bieten eine ideale Kombination dieser Eigenschaften.

Anhand einer von der Arbeitsgemeinschaft für Dämmstoffe aus nachwachsenden Rohstoffen, ADNR, vorgenommenen Gegenüberstellung (siehe Tabelle 1) geht hervor, dass die aus Naturstoffen hergestellten Dämmprodukte gegenüber den Plattenerzeugnissen aus Mineral- und Steinwolle sowie aus Hartschaum (Styropor) eindeutige Vorteile vorzuweisen haben, wenn es um einen wirksamen sommerlichen Wärme- bzw. Hitzeschutz geht. Sowohl die spezifische Wärmekapazität als auch die Phasenverschiebung sind bei allen Produkten aus nachwachsenden Rohstoffen weit aus günstiger als bei den Vergleichsmaterialien.

Produkte	TAV*	Rohdichte (kg/m3)	Spezifische. Wärmekapazität (J/kgK)	Phasen- verschiebung (h)
Holzfaser-Dämmplatten	9 %	140	2 100	11,7
Zellulose (+HFD 20 mm)	16 %	45	1 940	8,7
Flachs	20 %	30	1 550	7,4
Baumwolle	21 %	20	1 900	7,1
Schafwolle (+ HFD 20 mm)	22 %	25	1 300	7,0
Steinwolle	21 %	40	1 000	6,7
Polystyrol	22 %	20	1 500	6,3
Mineralwolle	23 %	20	1 000	5,9

^{*}Temperatur-Amplitudenverhältnis

Tabelle 1: Gegenüberstellung von Dämmstoffen

Den vorgenommenen Berechnungen der ADNR liegt eine identische Dachkonstruktion (Holzanteil: 13 %, U-Wert: 0,26 W/m²K) mit gleicher Dämmdicke (180 mm oder 160+20 mm) und derselben Wärmeleitfähikgkeitsgruppe (040) zugrunde.

Beleg dafür sind nicht allein die Baustoff-Kennzahlen (siehe Tabelle 1), sondern auch die Testergebnisse von Untersuchungen in Holland, Deutschland und in der Schweiz. Die im Sommer 1998 von PAVATEX initiierten Tests hatten zum Ziel, ergänzend zu den bekannten theoretischen Parametern, durch Messungen die Unterschiede von Holzfasern zu den wichtigsten Substituten am Markt, nämlich Mineralfasern und Cellulosefasern, festzustellen.

Phasenverschiebung

Die Phasenverschiebung entspricht der Zeitspanne zwischen dem Auftreten der höchsten Aussentemperatur und der höchsten Innentemperatur im Tagesverlauf. Mittels richtiger Planung und zweckmässiger Konstruktion sowie der Wahl geeigneter Baustoffe sollte angestrebt werden, dass die höchste Temperatur des Tages erst in der Nacht auf die Raumseite gelangt. Eine Phasenverschiebung von 10 bis 12 Stunden wäre ideal. In der Praxis würde somit die Mittagshitze, die zwischen 13 und 15 Uhr auf das Dach einwirkt, mit der entsprechenden zeitlichen Verzögerung (10 bis 12 h) erst zwischen 23 und 3 Uhr an die Räume abgegeben werden. Zu dieser Nachtzeit aber ist die Aussentemperatur normalerweise bereits soweit abgekühlt, dass Wärme auch über die Fensteröffnung «weglüften» kann (Nachtauskühlung).

Amplitudendämpfung

Unter der Amplitudendämpfung versteht man das Verhältnis von der Aussentemperatur- zur Innentemperaturschwankung. Das bedeutet, dass die normalerweise entstehende Temperaturkurve der Aussenluft durch den Dämmstoff so weit sinken soll, dass die Tageshöchsttemperatur nur noch stark reduziert im Innenraum ankommt.

Temperaturamplitudenverhältnis

Das Temperaturamplitudenverhältnis (TAV in Tabelle 1) wird in Prozent ausgedrückt. Je niedriger dieser TAV-Wert ist (Holzfaser-Dämmplatten: 9%), desto besser ist die Wirkung des verwendeten Dämmstoffes (siehe Tabelle 1). Letztere hängt einmal von der fühl- wie messbaren Wärmespeicherfähigkeit (spezifische Wärmekapazität) und zum anderen vom Wärmedurchgangskoeffizienten (U-Wert) ab.

Sommerlicher Hitzeschutz

Als Versuchsanordnung dienten drei Messkabinen, deren Abmessungen und Konstruktionen identisch waren, die sich jedoch in der Art der Dachsysteme unterschieden. Es sind also nicht drei gleiche Dächer mit unterschiedlichen Dämmstoffenn, sondern drei typische Dachaufbauten, für die entsprechend Dämmstoffe (Holzfaser, Mineralwolle, Cellulosefaser) getestet und verglichen wurden.

Die Versuchsauswertung hat ergeben, dass in der mit PAVATHERM gedämmten Testkabine eine Absenkung der Tageshöchsttemperaturen von bis zu 3,4°C erreicht werden konnte. Dieser Wert darf tendenziell höher angenommen werden als aus den Tests hervorgeht, da in den Versuchen mit einer Dachfläche von lediglich 6 m² gearbeitet wurde


In der Praxis sind die Dachflächen bedeutend grösser, so dass sich der Temperaturunterschied bis zu 7°C vergrössert und sich in der Folge sehr positiv auf die Raumtemperatur auswirkt. Ebenso eindeutig wie aufschlussreich war ein anderes Ergebnis:

Im Messhaus mit PAVATHERM-Dach wurden im Vergleich zur Mineralfaser-Variante während 270 Stunden tiefere Lufttemperaturen gemessen. Dieses Ergebnis ist umso bemerkenswerter, als rund die Hälfte des gesamten Zeitrahmens (600 Stunden) auf Morgen- und Nachtstunden entfiel, in denen ohnehin angenehme Temperaturen herrschen und kein Hitzeschutz notwendig ist.

Durch den Einsatz von PAVATHERM-Wärmedämmung erübrigen sich unter Umständen andere bauliche Massnahmen oder der Einsatz von technischen Anlagen, um einen wirkungsvollen Hitzeschutz zu erreichen und die Anforderungen der SIA-Norm 180 zu erfüllen. Es ist deshalb erklärbar, warum Bauherren und Planende bei ihrer Dämmstoffwahl, neben den bauphysikalischen und technischen Vorteilen, die natürliche Baustoffe bieten, vermehrt auch deren ökologische und gesundheitliche Aspekte in Erwägung ziehen und Holzfaserpro-dukte (PAVATHERM, DIFFUTHERM und andere) favorisieren.

Temperaturverlauf auf der Dachunterseite

U-Wert 0.20 W/m² K

Einfluss des Dämmstoffes

Bei leichten Bauteilen z.B. Dachkonstruktionen hat der grosse Flächenanteil der Dämmung im Dachquerschnitt respektive die Art des Dämmstoffes einen grossen Einfluss auf den sommerlichen Hitzeschutz.

Kennwerte von Bedeutung für den sommerlichen Hitzeschutz

Spezifische Wärmekapazität c (J/kg K)
 Gibt an, welche Wärmemenge in Joule nötig ist, um bei einem kg eines Stoffes die Temperatur um 1 K (Kelvin) zu erhöhen.

Beispiele Spezifische Wärmekapazität c von Dämmstoffen

Art des Dämmstoffes	Dichte (kg/m³)	Spez. Wärmekapazität c (J/kg K)	Wärmeleitzahl $\lambda_{\scriptscriptstyle D}$ (W/mK)
ISOROOF-NATUR	240	2100	0.047
PAVATHERM-Dämmplatte	140	2100	0.038
PAVAFLEX-Dämmplatte	55	2100	0.038
Steinwolleplatten	32	830	0.036
Glasfaserplatten	16	1030	0.038

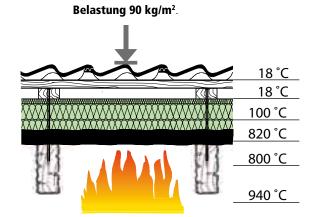
Spezifische Wärmespeicherkapazität cρ (J/kg K)
 Sagt aus, welche Wärmemenge auf 1 m² Fläche und einer Dichte X eingespeichert werden kann.

Beispiele Spezifische Wärmespeicherkapazität cρ von Dämmstoffen

Art des Dämmstoffes	Dichte	Spez. Wärmekapazität c	Wärmeleitzahl $\lambda_{_{\mathrm{D}}}$	Spez. Wärmespeicherkapazität cp [= Dichte (kg) x c (J/kg K x Dicke (m)]
	(kg/m³)	(J/kg K)	(W/mK)	(J/kg K)
ISOROOF-NATUR	240	2100	0.047	17640
PAVATHERM-Dämmplatte	140	2100	0.038	58800
PAVAFLEX-Dämmplatte	55	2100	0.038	23100
Steinwolleplatten	32	830	0.036	5312
Glasfaserplatten	16	1030	0.038	3296

Konstruktionsbeispiel Dachaufbau

Konstruktionskennwerte	Winterlicher Kälteschutz	Somme Hitzes	
Für ganze Dachkonstruktion 2 2 3 4 5 1 PAVATEX-Unterdachsysteme 2 Sparren/PAVAFLEX oder MF-Dammung 200 mm 3 PAVATEX DB 3.5 oder DB 28 4 Lattung/Luft 24 mm Täferdecke 15 mm	U-Wert (W/m²K) Anforderungen MuKen & Minergie S. 28 Ohne Wärmebrücken Mit Wärmebrücken	Phasenverschiebung Eta (h) Dynam. U-Wert U ₂₄ (W/m²K) Fall I Heindl	Kennwerte nach SIA 180 Dynam. U-Wert U24 Wärmekapazitat ki (W/m2K) (kJ/m2K)
Dämmstoffmaterialien	Däm	mstärke zwischen den Sparren ir	ı mm
	200	200	200
PAVAFLEX	0.16	8.7	0.07
	0.19	148	18.0
Steinwolle	0.15	4.2	0.10
	0.19	96	15.4
Glaswolle	0.16	3.4	0.11
	0.19	88	14.9


PAVATEX-Holzfaserdämmstoffe halten auch beim Brandschutz den hohen gesetzlichen Anforderungen stand.

Im Brandfall entsteht an der PAVATEX-Holzfaseroberfläche eine Verkohlungsschicht, welche eine Sauerstoffzufuhr und damit eine schnelle Brandausbreitung behindert.

Zusätzliche Sicherheit bringt das hohe Speichervermögen der Dämmplatten, wodurch der Wärmedurchgang nahezu vollständig verhindert wird

Durch den Einsatz von PAVATEX-Holzfaserdämmstoffen wird es somit möglich, sehr gute Bauteil-Feuerwiderstände zu erreichen.

Belastung 90 kg/m².

Aufsparrendämmung aus PAVATHERM und ISOROOF-NATUR

Prüfaufbau von aussen nach innen:*

Dacheindeckung Lattung

Konterlattung

60 mm PAVATHERM-PLUS-Unterdachplatte

60 mm PAVATHERM-Holzfaserdämmplatten

Dachschalungsbahn

18 mm Holzschalung Nut+Kamm

Vollholzsparren (120 x 240)

Bauteilzustand und Temperaturen nach 50 Minuten Prüfdauer

Die Holzsparren waren gemäss DIN 4102-4 für REI 45 dimensioniert, haben aber während der gesamten Prüfdauer ihre Tragfähigkeit bewahrt.

Brandschutz

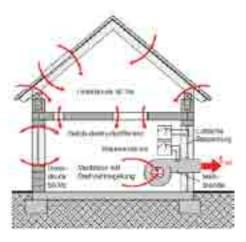
Obwohl Holzfaserdämmstoffe als normal entflammbare Baustoffe eingestuft sind (B2 / E), haben die von PAVATEX veranlassten, wegweisenden Brandschutzprüfungen an Dächern und Wänden in Holzbauweise gezeigt, dass sie sehr wohl einen deutlichen Anteil zur Feuerwiderstandsklasse der Bauteile beitragen. Einerseits wird der Abbrand wie bei massiven Vollholzquerschnitten durch eine schützende Verkohlung verzögert. Andererseits sorgt die hohe Wärmespeicherfähigkeit für einen sehr langsamen Temperaturdurchgang durch das Bauteil. Die feuerabgekehrte Seite bleibt lange Zeit praktisch "kalt".

Das PAVATEX-Aufsparrendämmsystem war das erste System dieser Art, das lediglich mit einer 18 mm dicken Holzschalung den Prüfnachweis für die Feuerwiderstandklasse REI 45 erhielt.

Wichtiger Hinweis für Planer

Unterdächer aus Holzfaserplatten sind bis zur Hochhausgrenze einsetzbar das heisst:

- Max. 8 Geschosse
- Traufhöhe ≤ 25 m*
- Oberster Fussboden ≤ 22 m*
 - *Ab angrenzendem Terrain.


^{*}Sparrenachsabstand =100 cm

Luftdichtheit der Gebäudehülle

In der SIA 180 und 232 ist verankert, dass Neubauten luftdicht gebaut werden müssen. Grund ist, dass der Wärmeverlust durch Lüftung oft größer als der Wärmeverlust durch Transmission über die Aussenhülle. Ausserdem führt eine gute Luftdichtheit der Gebäudehülle zu höherem Komfort, da keine

Zugerscheinungen auftreten, die Effektiviät einer Lüftungsanlage wird erhöht, und Schäden an Aussenbauteilen und Wärmedämmung durch ausströmende, feuchte Luft werden vermieden.

Durch eine Messung kann während der Bauphase die Qualitätssicherung verbessert werden, indem Mängel, die zu bauphysikalischen Problemen und Bauschäden führen können, erkannt und beseitigt werden. Das Blower-Door-Verfahren ist ein genormte Verfahren, mit dem die Luftdichtheit geprüft wird und Mängel der Luftdichtheit gefunden werden.

BLower-Door-Prüfverfahren Variante B: mit Überdruck und Nebel zur Leckagesuche

Gute Gründe für eine luftdichte Gebäudehülle:

- Normiert geregelt gemäss SIA 180 / 232.
- Vermeiden von unangenehmer Zugluft.
- Sicherstellung der Behaglichkeit ohne Kaltluftseen im Erdgeschoss und somit keine kalten Füsse.
- Vermeidung des Feuchteeintrags in die Konstruktion und damit Vorbeugung von Fäulnis und Schimmelbildung.
- Sicherstellung schadstoffarmer Raumluft.
- Verbesserung des Schallschutzes.
- Erhöhung der Effektivität von Abluftanlagen; ob mit oder ohne Wärmerückgewinnung ausgestattet.
- Verringerung der Gefahr der Brandübertragung und Verhinderung von Rauchgaseintrag.

Stichwort "Winddichtheit":

Während die "Luftdichtheit" normativ geregelt ist und genormte Prüfverfahren existieren, wird der häufig benutzte Begriff "Winddichtheit" nur für die Verständigung in der Norm erwähnt.

Das es darüber hinaus keinerlei Anforderungen an die Winddichtheit der Gebäude gibt, wird allein dadurch belegt, dass belüftete Dämmschichten im Dach - also eine Belüftung zwischen Unterdachbahn und Dämmschicht - nach wie vor den allgemein anerkannten Regeln der Technik entsprechen. Mit allen Nachteilen. Dennoch ist eine auch "winddichte Gebäudehülle" für die energiesparende Bauweise unabdingbar.

(eine Fuge mit 1mm Breite und 1 mm Länge verringert den Dämmwert der betroffenen Bauteilfläche bei Windstärke 3 bis 5 um 35 bis 65 %).

Bereich Dach:

Mit vollgedämmten, diffusionsoffenen Dachquerschnitten und fugendicht ineinandergefügten Unterdächern aus ISOROOF-NATUR oder PAVATHERM-PLUS wird ein Durchströmen der Wärmedämmung von aussen und damit zusätzlicher Energieverlust wirksam verhindert.

Eine Belüftung findet dabei lediglich zwischen Unterdeckung und Dacheindeckung

statt, um Feuchtigkeit aus dieser Ebene abzuführen.

Bereich Wand:

Mit vollgedämmten, diffusionsoffenen Wandquerschnitten und fugendicht ineinandergefügten ISOROOF-NATUR oder PAVATHERM-PLUS Platten, wird ein Durchströmen der Wärmedämmung von aussen und damit zusätzlicher Energieverlust wirksam verhindert.

Eine Belüftung findet dabei lediglich zwischen wasserableitender Schicht und Fassade statt, um Feuchtigkeit aus dieser Ebene abzuführen.

Wissenswertes zum Thema: "Richtiges" Lüften

Lüftung und Raumklima

Als Verbrennungsprodukte des Stoffwechsels erzeugt der Mensch ständig Kohlendioxid und Wasserdampf.

Ein zu hoher Kohlendioxidgehalt in der Luft von Wohnräumen verursacht bei den Bewohnern Ermüdungserscheinungen und Konzentrationsschwierigkeiten.

In einem 4-Personen-Haushalt können von den Bewohnern bis zu 13 kg Feuchtigkeit pro Tag produziert werden. Eine dauerhaft hohe Luftfeuchtigkeit von ca. 60-65 % (bei 20 °C) führt zu Kondenswasserbildung an kalten Oberflächen (z.B. an sog. Wärmebrücken). Dadurch bilden sich feuchte Stellen und es kommt zur Ansiedlung von Schimmelpilzen.

Durch regelmässiges Lüften der bewohnten Räume werden Kohlendioxid und Wasserdampf entfernt.

Die Zeiten ändern sich

Neubauten und sanierte Gebäude sind besser gedämmt und auch "dichter" als früher. Eine unfreiwillige Lüftung durch undichte Fenster und Türen sowie Fugen und Ritzen, wie sie zu früheren Zeiten üblich war, ist dadurch nicht mehr gegeben.

Auch das Wohnverhalten und der Anspruch an den Wohnkomfort haben sich geändert – es ist mehr Feuchtigkeit in den Wohnräumen vorhanden (Duschen, Baden, Kochen, Wäsche, Pflanzen usw.)

Dezember, Januar, Februar	4 bis 6 Minuten	
März, November	8 bis 10 Minuten	
April, Oktober	12 bis 15 Minuten	
Mai, September	16 bis 20 Minuten	
Juni, Juli, August	25 bis 30 Minuten	

Notwendige Lüftungsdauer für einen Luftwechsel bei Stoßlüftung (ganz geöffnetes Fenster bei Windstille) je nach jahreszeitlicher Aussentemperatur.

Das bedeutet für die Bewohner: Mehr und richtig dosiert lüften, damit Schimmelpilzbefall und Schadstoffbelastungen vermieden werden.

Als Kennwert für diesen gesicherten Luftaustausch dient die sogenannte Luftwechselrate. Sie gibt an, wie oft pro Stunde ein kompletter Luftaustausch eines Raumes oder eines ganzen Gebäudes stattfindet.

Die Energieeinsparverordnung geht bei älteren, undichten Gebäuden von einer Luftwechselrate von 1,0 pro Stunde aus. Neue bzw. gut sanierte Gebäude können Luftwechselraten zwischen 0,1 und 0,5 pro Stunde erreichen.

In Bezug auf eine ausreichende Raumluftqualität (CO₂-Gehalt) sollte, je nachdem ob es sich um eine Wohnung oder ein Haus handelt, ein Mindestluftwechsel von ca. 0,5 bis 0,8 pro Stunde angestrebt werden.

Wo kein System zur kontrollierten Lüftung eingebaut ist, muss dieser notwendige Luftaustausch durch regelmäßige und sachgerechte Fensterlüftung garantiert werden.

Orientierungshilfen zum "Richtigen" Lüften in Abhängigkeit der jeweiligen Innen- und Außenverhältnisse

- Optimal und energiesparend ist das Querlüften ("kurz und intensiv").
- Gut ist das Stosslüften, kurz und intensiv.

Abgabe von Feuchtigkeit in Wohnungen

- (()	7 45 60 1
Topfpflanzen	7 - 15 g/Std.
mittelgr. Gummibaum	10 - 20 g/Std.
trocknende Wäsche 4,5 kg Trommel geschleudert	50 - 200 g/Std.
Wannenbad	ca. 1100 g/Bad
Duschbad	ca. 1700 g/Bad
Kochen	400 - 500 g/Std. Kochzeit
Braten	ca. 600 g/Std. Garzeit
Geschirrspülmaschine	ca. 200 g/Spülgang
Waschmaschine	200 - 350 g/Waschgang
Menschen: - Schlafen - Haushaltsarbeit - anstrengende Tätigkeit	40 - 50 g/Std. ca. 90 g/Std. ca. 175 g/Std.

Quelle: Lüftung im Wohngebäude, Energiesparinfomation 08 Hessisches Ministerium für Wirtschaft, Verkehr und Landesentwicklung, 10/2004.

- Dauerlüftung durch ständig gekippte Fenster ist zu vermeiden, denn man heizt einerseits "zum Fenster hinaus" und zum anderen kühlen die angrenzenden Wandoberflächen aus (Gefahr der Kondenswasser- und Schimmelbildung).
- Alle Räume sollten je nach Funktion und Nutzung gelüftet werden (z.B. Schlafräume im Winter 2 x täglich 5-10 Minuten). Nur aktiv lüften, wenn die Räume genutzt werden, ansonsten reicht die "Selbstlüftung" durch Fugen zur Lufterneuerung.
- Dort wo extrem viel Feuchte entsteht (Küche, Bad) muss besonders gründlich gelüftet werden.
- Wäsche nicht in der Wohnung trocknen
- Warme, feuchte Luft nicht in kalte bzw. unbeheizte Räume leiten.
- Je kälter es draussen ist, desto besser funktioniert die Entfeuchtung der Raumluft, da kalte Luft trockener ist und deshalb bei Erwärmung viel Feuchtigkeit aufnehmen kann. Kellerfenster im Sommer nur nachts öffnen. Im Winter tagsüber zeitweise öffnen.
- Auch bei Regenwetter lohnt sich das Lüften, denn die Luft ist draussen meist kälter als im Raum und somit trockener.
- Während des Lüftens sind die Heizkörperventile zu schliessen.
- Befinden sich in einigen Wohnräumen sehr viele Pflanzen oder andere Feuchtequellen (z.B. Aquarium), so sollte die Luftfeuchte regelmäßig, z.B. mit einem Hygrometer, überprüft werden.
- Wenn neuer Wohnraum bezogen oder bestehender saniert wird (Auftreten von "Baufeuchte" und/oder Einbau dichter Fenster), sind die Lüftungsgewohnheiten an die neuen Gegebenheiten der Wohnung anzupassen!

Weitere Informationen unter: www.bfe.admin.ch www.energieantworten.ch www.bau-schlau.ch

PAVATEX und MINERGIE - eine Einheit

PAVATEX übertrifft den MINERGIE®-Standard

MINERGIE® ist ein Qualitätslabel für Neubauten und Sanierungen aller Gebäudekategorien. Die Vorteile für die Bauherrschaft beim Minergiestandard sind Energiekosteneinsparungen, mehr Komfort sowie bessere Werterhaltung der Bauten.

Die Anforderungen von MINERGIE® müssen vollumfänglich erfüllt und nachgewiesen werden. Einfach geht das mit zertifizierten MINERGIE®-Modulen von PAVATEX. Wir erleichtern Ihnen das Erreichen des MINERGIE®-Standards durch optimierte Dach- und Wandmodule.

MINERGIE®-Module mit Holzweichfaserdämmsystemen von PAVATEX erfüllen nicht nur den geforderten U-Wert, sie garantieren durch die ausgezeichneten Eigenschaften des Rohstoffes Holz weitere hervorragende Schutzfunktionen. Wärmebrücken können dank den PAVATEX-Konstruktionsarten erheblich reduziert werden.

Neue MINERGIE®-Anforderungen

Ab dem 01.01.2009 gibt es neuerdings neben den bestehenden Neubaumodulen auch die Möglichkeit, Sanierungen nach MINERGIE®-Standard durchzuführen. Zusätzlich werden die Anforderungen an den U-Wert der Konstruktionen verschärft:

MINERGIE®-Module im Neubau benötigen einen U-Wert \leq 0.15 W/m 2 K.

MINERGIE®-Module bei Sanierungen benötigen einen U-Wert ≤ 0.20 W/m²K.

Energiesparen und Wohlfühlen in MINERGIE®-Bauten mit PAVATEX-Modulen.

MINERGIE®-Standard mehr als erfüllt

Mit dem Einsatz der beiden Holzfaser-dämmstoffe PAVATEX DIFFUTHERM und ISOROOF-NATUR erfüllt dieses Einfamilienhaus in Oberriet, Kanton St. Gallen, den Minergie-Standard. Die Wände bestehen aus Holzelementen, einer Zelluloseschicht und 60 mm PAVATEX DIFFUTHERM. Zur Dämmung des Daches wurde die PAVATEX Unterdachplatte ISOROOF-NATUR mit einer Dicke von 52 mm verarbeitet. Dadurch erreicht das Haus eine hervorragende Energiekennzahl von 48,4 kWh/m²a. Die Basis für eine Wohnatmosphäre zum Wohlfühlen.

Mit MINERGIE®-P-Standard in die Zukunft

In Schellenberg, Fürstentum Liechtenstein, steht dieses Einfamilienhaus. Die Aussenwände bestehen aus einer Holzständerkonstruktion mit Zelluloseschicht und 22 mm dicken ISOROOF-NATUR Holzweichfaserplatten. Mit einem U-Wert von 0,1 W/m²K sowie einer Energiekenn-zahl von 47 kWh/m²a konnte dieses Wohnhaus das MINERGIE®-P-Zertifikat erhalten.

Neben einer Wärmepumpe als Heizsystem wurden zusätzlich Sonnenkollektoren auf dem Dach installiert. Mit diesem Einfamilienhaus profitiert der Umweltschutz und der Eigentümer kann sich über tiefere Betriebskosten freuen.

Am Ende stehen mehr Behaglichkeit und eine bessere Wohnqualität.

Zertifizierte MINERGIE-Module mit PAVATEX

Dachmodul 01. Einfach belüftetes Dachsystem.

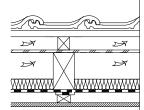
N

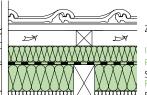
Ziegeleindeckung

PAVATHERM-PLUS 100 mm

Sparren 200 mm / PAVAFLEX 200 mm

PAVATEX DB 28 Lattung / Luft 24 mm Täferdecke 15 mm


Dachmodul 02. PAVATEX Sanierungslösung mit PAVATEX LDB 0.02


vorher

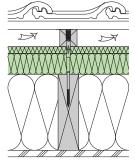
Ziegeleindeckung

Sparren 160 mm

Flumroc Aluflex 40 mm Lattung / Luft 24 mm Täferdecke 15 mm

nachher

Ziegeleindeckung

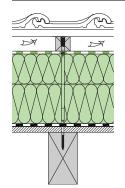

ISOROOF-NATUR 60 mm PAVATEX LDB 0.02 Sparren 160 mm Flumroc Aluflex 40 mm Lattung / Luft 24 mm Täferdecke 15 mm

Konstruktionskennwerte	Einheit	
U-Werte - ohne Wärmebrücken - mit Wärmebrücken	W/m²K W/m2K	0.125 0.146
Sommerlicher Hitzeschutz - Phasenverschiebung* - Dynam. U-Wert U ₂₄	Eta (h) W/m²K	12.0 0.03
Bewertetes Schalldämm-Mass Rw		
- Mit Ziegel - Mit Dachschiefer	dB dB	ca. 52 ca. 56

Konstruktionskennwerte	Einheit	
U-Werte		
- ohne Wärmebrücken	W/m ² K	0.17
- mit Wärmebrücken	W/m²K	0.20
Sommerlicher Hitzeschutz		
- Phasenverschiebung*	Eta (h)	7.7
- Dynam. U-Wert U ₂₄	W/m²K	0.080
Bewertetes Schalldämm-Mass Rw		
- Mit Ziegel	dB	ca. 51
- Mit Dachschiefer	dB	ca 55

Dachmodul 03. Einfach belüftetes Dachsystem.

Dachmodul 04. Einfach belüftet, Aufsparrendämmung



PAVATHERM-PLUS 52 mm

Ziegeleindeckung

Sparren 220 mm /

3-Schichtplatte 15 mm

Ziegeleindeckung

PAVATEX ADB

PAVATHERM 120 mm

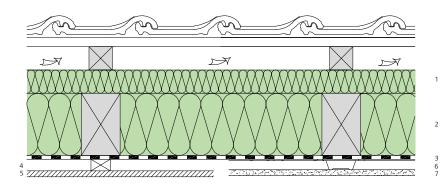
PAVATHERM 140 mm

PAVATEX DSB 2 Schalung 20 mm

Konstruktionskennwerte	Einheit	
U-Werte - ohne Wärmebrücken - mit Wärmebrücken	W/m²K W/m²K	0.13 0.14
Sommerlicher Hitzeschutz - Phasenverschiebung* - Dynam. U-Wert U ₂₄	Eta (h) W/m²K	13.37 0.03
Bewertetes Schalldämm-Mass Rw - Mit Ziegel - Mit Dachschiefer	dB dB	ca. 48 ca. 52

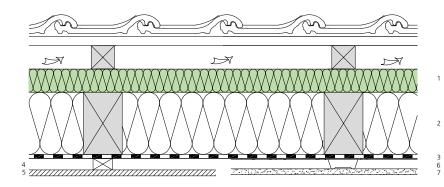
Konstruktionskennwerte	Einheit	
U-Werte		
- ohne Wärmebrücken	W/m ² K	0.14
- mit Wärmebrücken	W/m²K	0.15
Sommerlicher Hitzeschutz		
- Phasenverschiebung*	Eta (h)	14.9
- Dynam. U-Wert U ₂₄	W/m ² K	0.02
Bewertetes Schalldämm-Mass Rw		
- Mit Ziegel	dB	ca. 46
- Mit Dachschiefer	dB	ca. 50
- IVIIL Dacrischierer	UD	ca. 50

Neben diesen zertifizierten Aufbauten bietet PAVATEX eine Fülle von Konstruktionen, mit denen Sie die Anforderungen nach MINERGIE®-Standard erreichen.


Nützen Sie ganz einfach unsere Gratishotline für technische Fragen und lassen Sie sich unverbindlich beraten:

0800-Dämmen (0800-326636)

Konstruktion 1a - mit PAVAFLEX


- 1 PAVATEX-Unterdachsysteme
- 2 Sparren / PAVAFLEX 180 – 240 mm
- 3 PAVATEX DB 3.5 oder DB 28
- 4 Lattung/Luft 24 mm
- 5 Täferdecke 15 mm
- 6 Federschiene *
- 7 Gipsfaserplatte 12.5 mm
 - * Bei einer Konstruktion mit Federschiene und Gipsfaserplatte verbessern sich die Werte für das bewertete Schalldämmmass um ca. 4 dB.

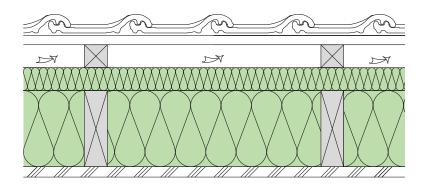
Konstruktionskennwerte			rliche: schutz				_	omme Hitzes							Schall	schutz		
Berechnungsgrundlagen Sparrenachsmass: 700 mm Sparrenbreite: 100 mm		(Anford	(W/m2l erungen nergie S.	,	Pha	senver Eta		ung	Dyi	nam. U (W/r		J24	_	Bewe challdä Rw ca.	mmmas	is	Spek Anpas werte	
Kennwerte PAVAFLEX Seite 10	M	lit Wärm	nebrücke	en		Fall I I	Heindl						Zi	egel / Da	chschief	er	1)C /C _{tr}	2)C/C _{tr}
Unterdachsystem						0)ämm:	stärke	zwisc	hen d	en Spa	arren i	n mm					
	180	200	220	240	180	200	220	240	180	200	220	240	180	200	220	240	180	- 240
PAVISO 22 mm	0.24	0.22	0.20	0.19	6.2	7.0	7.7	8.5	0.12	0.10	0.08	0.06	47 / 51	48 / 52	48 / 52	49 / 53	-3 / -10	-3 / -10
UNTERDACH BitumKN 24 mm	0.24	0.22	0.20	0.18	6.4	7.1	7.9	8.7	0.12	0.09	0.08	0.06	47 / 51	48 / 52	48 / 52	49 / 53	-3 / -10	-4 / -10
ISOROOF-NATUR 22 mm	0.24	0.22	0.20	0.19	6.3	7.0	7.8	8.6	0.12	0.10	0.08	0.06	47 / 51	48 / 52	48 / 52	49/ 53	-3 / -10	-4 / -10
ISOROOF-NATUR 35 mm	0.22	0.20	0.19	0.18	7.2	8.0	8.8	9.6	0.10	0.08	0.06	0.05	48 / 52	49 / 53	49 / 53	50 / 54	-3 / -10	-4 / -10
ISOROOF-NATUR 52 mm	0.20	0.19	0.18	0.16	8.7	9.5	10.3	11.1	0.08	0.06	0.05	0.04	50 / 54	51 / 55	51 / 55	52 / 56	-3 / -10	-4 / -10
ISOROOF-NATUR 60 mm	0.20	0.18	0.17	0.16	9.3	10.1	10.9	11.7	0.06	0.05	0.04	0.03	50 / 54	51 / 55	51 / 55	52 / 56	-3 / -10	-4 / -10
PAVATHERM-PLUS 60 mm	0.19	0.18	0.17	0.16	8.8	9.6	10.4	11.2	0.07	0.05	0.04	0.03	48 / 52	49 / 53	49 / 53	50 / 54	-4 / -10	-4 / -10
PAVATHERM-PLUS 80 mm	0.18	0.16	0.15	0.15	10.3	11.1	11.9	12.7	0.05	0.04	0.03	0.02	50 / 54	51 / 55	51 / 55	52 / 56	-4 / -10	-4 / -10
PAVATHERM-PLUS 100 mm	0.16	0.15	0.14	0.14	11.7	12.5	13.3	14.1	0.03	0.03	0.02	0.02	51 / 55	52 / 56	52 / 56	53 / 57	-4 / -10	-4 / -10
PAVATHERM-PLUS 120 mm	0.15	0.14	0.13	0.13	13.1	13.9	14.7	15.5	0.02	0.02	0.02	0.01	52 / 55	53 / 56	53 / 57	54 / 58	-4 / -10	-4 / -10
PAVATHERM-PLUS 140 mm	0.14	0.13	0.13	0.13	14.4	15.2	15.2	16.0	0.02	0.01	0.01	0.01	52 / 55	53 / 56	53 / 57	54 / 58	-4 / -10	-4 / -10
PAVATHERM-PLUS 160 mm	0.13	0.12	0.12	0.12	15.8	16.6	16.6	17.4	0.01	0.01	0.01	0.01	52 / 55	53 / 56	53 / 57	54 / 58	-4 / -10	-4 / -10

** Objektspezifische Akustikwerte sind bauseits nachzuweisen

Konstruktion 1b - mit Mineralfaser

- 1 PAVATEX-Unterdachsysteme
- Sparren / MF-Dämmung 180 – 240 mm
- 3 PAVATEX DB 3.5 oder DB 28
- 4 Lattung 5 Täferdecke 15 mm
- 6 Federschiene *
- 7 Gipsfaserplatte 12.5 mm
 - * Bei einer Konstruktion mit Federschiene und Gipsfaserplatte verbessern sich die Werte für das bewertete Schalldämmmass um ca. 4 dB.

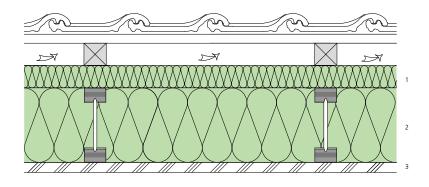
Konstruktionskennwerte		Winte Kältes					_		erliche schutz						Schall	schutz		
Berechnungsgrundlagen Sparrenachsmass: 700 mm Sparrenbreite: 100 mm		-Wert ((Anford Ken & Mi	erungen	•	Pha	senver Eta		ung	Dyi	nam. U (W/r		J24	S	challdä	rtetes mmmas 1. (dB)	ss		trum- sungs- e (dB)
Mineralfaserdämmung *	M	lit Wärm	nebrücke	en		Fall I I	Heindl						Zi	iegel / Da	chschief	er	1)C /C _{tr}	2)C/C _{tr}
Unterdachsystem)ämm:	stärke	zwisc	hen d	en Spa	arren i	n mm					
	180	200	220	240	180	200	220	240	180	200	220	240	180	200	220	240	180 -	- 240
PAVISO 22 mm	0.23	0.21	0.20	0.18	2.5	2.7	2.8	3.1	0.14	0.12	0.11	0.10	47 / 51	48 / 52	48 / 52	49 / 53	-3 / -10	-3 / -10
UNTERDACH BitumKN 24 mm	0.23	0.21	0.19	0.18	2.7	2.8	3.0	3.2	0.14	0.12	0.11	0.10	47 / 51	48 / 52	48 / 52	49 / 53	-3 / -10	-4 / -10
ISOROOF-NATUR 22 mm	0.23	0.21	0.19	0.18	2.6	2.7	2.9	3.1	0.14	0.12	0.11	0.10	47 / 51	48 / 52	48 / 52	49/ 53	-3 / -10	-4 / -10
ISOROOF-NATUR 35 mm	0.22	0.20	0.18	0.17	3.5	3.7	4.0	4.2	0.12	0.11	0.10	0.09	48 / 52	49 / 53	49 / 53	50 / 54	-3 / -10	-4 / -10
ISOROOF-NATUR 52 mm	0.20	0.18	0.17	0.16	5.1	5.3	5.5	5.8	0.10	0.09	0.08	0.07	50 / 54	51 / 55	51 / 55	52 / 56	-3 / -10	-4 / -10
ISOROOF-NATUR 60 mm	0.19	0.18	0.17	0.15	5.8	6.0	6.3	6.6	0.08	0.08	0.07	0.06	50 / 54	51 / 55	51 / 55	52 / 56	-3 / -10	-4 / -10
PAVATHERM-PLUS 60 mm	0.19	0.17	0.16	0.15	5.2	5.5	5.7	6.0	0.09	0.08	0.07	0.07	48 / 52	49 / 53	49 / 53	50 / 54	-4 / -10	-4 / -10
PAVATHERM-PLUS 80 mm	0.17	0.16	0.15	0.14	6.8	7.0	7.3	7.6	0.06	0.06	0.05	0.05	50 / 54	51 / 55	51 / 55	52 / 56	-4 / -10	-4 / -10
PAVATHERM-PLUS 100 mm	0.16	0.15	0.14	0.13	8.3	8.5	8.7	9.0	0.04	0.04	0.04	0.03	51 / 55	52 / 56	52 / 56	53 / 57	-4 / -10	-4 / -10
PAVATHERM-PLUS 120 mm	0.15	0.14	0.13	0.12	9.6	9.9	10.1	10.4	0.03	0.03	0.02	0.02	52 / 55	53 / 56	53 / 57	54 / 58	-4 / -10	-4 / -10
PAVATHERM-PLUS 140 mm	0.14	0.13	0.12	0.12	11.0	11.2	11.5	11.7	0.02	0.02	0.02	0.02	52 / 55	53 / 56	53 / 57	54 / 58	-4 / -10	-4 / -10
PAVATHERM-PLUS 160 mm	0.13	0.12	0.12	0.11	12.3	12.6	12.8	13.1	0.02	0.01	0.01	0.01	52 / 55	53 / 56	53 / 57	54 / 58	-4 / -10	-4 / -10


Kennwerte Mineralfaserdämmung:

Dichte ρ [kg/m³] Wärmeleitzahl λ_D [W/m K]

0.036

Konstruktion 2 - mit PAVAFLOC

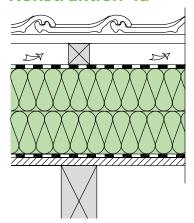

- 1 PAVATEX-Unterdachsysteme 2 Sparren / PAVAFLOC 240 300 mm
- 3 Mehrschichtplatte 27 mm

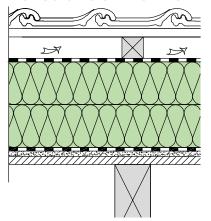
Konstruktionskennwerte			rliche: schutz					omme Hitzes							Schall	schutz		
Berechnungsgrundlagen Sparrenachsmass: 625 mm Sparrenbreite: 60 mm	Mul	(Anford Ken & Mi	nergie S.	28)	Pha	senver Eta	(h)	ung	Dyr	nam. U (W/n		J24		Bewe challdä Rw ca.	mmmas (dB) *		werte	sungs- e (dB)
Kennwerte PAVAFLOC Seite 8	N	lit Wärm	nebrücke	en		Fall I I	Heindl						Zi	egel / Da	chschief	er	1)C /C _{tr}	2)C/C _{tr}
Unterdachsystem)ämm:	stärke	zwisc	hen d	en Spa	arren i	n mm					
	240	260	280	300	240	260	280	300	240	260	280	300	240	260	280	300	240 -	- 300
UNTERDACH BitumKN 24 mm	0.17	0.16	0.15	0.14	10.2	11.0	11.8	12.6	0.05	0.04	0.03	0.03	49 / 53	50 / 54	50 / 54	50 / 54	-2/-8	-2/-8
ISOROOF-NATUR 35 mm	0.16	0.15	0.14	0.13	11.1	11.9	12.7	13.5	0.05	0.04	0.03	0.02	50 / 54	51 / 55	51 / 55	51 / 55	-2/-8	-2/-8
ISOROOF-NATUR 52 mm	0.15	0.14	0.13	0.13	12.6	13.4	14.2	15.0	0.03	0.03	0.02	0.02	52 / 56	53 / 57	53 / 57	53 / 57	-2/-8	-2/-8
ISOROOF-NATUR 60 mm	0.15	0.14	0.13	0.12	13.2	14.1	14.9	15.7	0.03	0.02	0.02	0.02	52 / 56	53 / 57	53 / 57	53 / 57	-2/-8	-2/-8
PAVATHERM-PLUS 60 mm	0.14	0.14	0.13	0.12	12.8	13.6	14.4	15.2	0.03	0.02	0.02	0.02	50 / 54	54 / 58	54 / 58	54 / 58	-2/-8	-2/-8
PAVATHERM-PLUS 80 mm	0.14	0.13	0.12	0.12	14.2	15.0	15.8	16.6	0.02	0.02	0.01	0.01	52 / 56	54 / 58	54 / 58	54 / 58	-2/-8	-2/-8
PAVATHERM-PLUS 100 mm	0.13	0.12	0.11	0.11	15.6	16.4	17.2	18.0	0.02	0.01	0.01	0.01	53 / 57	54 / 58	54 / 58	54 / 58	-2/-8	-2/-8
PAVATHERM-PLUS 120 mm	0.12	0.11	0.11	0.10	17.0	17.8	18.6	19.4	0.01	0.01	0.01	0.01	54 / 58	54 / 58	54 / 58	54 / 58	-2/-8	-2/-8
PAVATHERM-PLUS 140 mm	0.11	0.11	0.10	0.10	18.3	19.1	20.0	20.8	0.01	0.01	0.01	0.00	54 / 58	54 / 58	54 / 58	54 / 58	-2/-8	-2/-8
PAVATHERM-PLUS 160 mm	0.11	0.10	0.10	0.09	19.7	20.5	21.3	22.1	0.01	0.00	0.00	0.00	54 / 58	54 / 58	54 / 58	54 / 58	-2/-8	-2/-8

^{*} Objektspezifische Akustikwerte sind bauseits nachzuweisen

Konstruktion 3

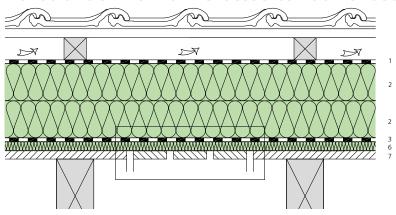
- 1 PAVATEX-Unterdachsysteme 2 Stegträger "Finnjoist" / PAVAFLOC 58 kg/m³ 220 500 mm
- 3 Mehrschichtplatte 27 mm


Konstruktionskennwerte		Winte Kälte:	rliche: schutz				_		erliche schutz						Schall	lschutz		
Berechnungsgrundlagen Zwischenraum: 600 mm Breite: 58 mm		U-Wert (W/m2K) (Anforderungen MuKen & Minergie S. 28)				senver Eta	schieb (h)	ung	Dyi		-Wert l n2K)	J24	S	challdä	rtetes mmma: (dB) *	ss	Anpas	trum- sungs- e (dB)
Kennwerte PAVAFLOC Seite 8	N	lit Wärn	nebrücke	en		Fall I I	Heindl						Zi	egel / Da	achschie	fer	1)C /C _{tr}	2)C /C _{tr}
Unterdachsystem						Dä	mmstä	irke zv	wische	en den	Stegt	rägeri	n in mr	n				
	220	300								500	220	300	400	500	220	400		
ISOROOF-NATUR 35 mm	0.16	0.12	0.09	0.08	10.2	13.4	17.5	21.5	0.06	0.03	0.01	0.00	49 / 53	51 / 55	k. A.	k. A.	-2/-8	-2/-8
ISOROOF-NATUR 60 mm	0.15	0.11	0.09	09 0.07 12.3 15.6 19.6 23.7 0.04 0.02 0.01 0.00 51/53 53/57 k.A. k.				k. A.	-2/-8	-2/-8								


^{*} Objektspezifische Akustikwerte sind bauseits nachzuweisen

Konstruktion 4a

Konstruktion 4b - für verbesserten Schallschutz



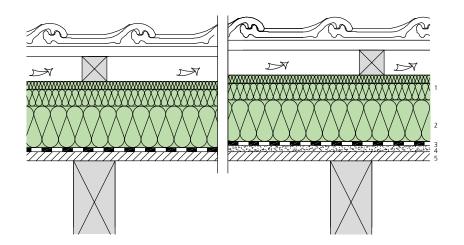
- 1 PAVATEX ADB
- 2 PAVATHERM 80 120 mm
- 3 PAVATEX DSB 2
- 4 Gipsfaserplatte 12.5 mm
- 5 Schalung 20 mm 6 PAVAPOR-Akustikplatte 22 mm
- 7 Schlitz-Schalung 20 mm

(Schlitzanteil 20% = Riemen 90 mm + Schlitze 22.5 mm)

Konstruktion 4c - für verbesserte Raumakustik

Schallabsorptionskoeffizienten α s

Frequenz [Hz]	Schallabsorptionsgrad [α s]
125	0.53
250	0.66
500	0.77
1000	0.59
2000	0.51
4000	0.43


Konstruktionskennwerte			rliche schutz				_	omme Hitzes							Schall	schutz		
Berechnungsgrundlagen Kennwerte PAVATEX-Produkte ab Seite 6		(Anford	(W/m2I erungen inergie S.	•	Pha		schieb (h)	ung	Dyi	nam. U (W/r	-Wert l n2K)	J24	S	Bewe schalldä Rw ca.		ss	Anpas	trum- sungs- e (dB)
	M	lit Wärn	nebrücke	en		Fall I I	Heindl						Zi	iegel / Da	achschief	er	1)C /C _{tr}	2)C /C _{tr}
Dämmsystem								D	ämms	tärke	in mn	1						
	160	180	200	220	160	180	200	220	160	180	200	220	160	180	200	220	160	- 220
Konstruktion 4a PAVATHERM	0.22	0.20	0.18	0.16	9.0	10.3	11.5	12.8	0.10	0.07	0.05	0.04	44 / 48	45 / 49	45 / 49	46 / 50	-3/-10	-4/-10
Konstruktion 4b PAVATHERM & Gipsfaserplatte	0.22	0.20	0.18	0.16	9.6	10.9	12.2	13.5	0.10	0.07	0.05	0.04	48 / 52	49 / 53	49 / 53	50 / 54	-4/-10	-4/-10

Dämmsystem								D	ämms	tärke	in mm	1						
	162	182	202	222	162	182	202	222	162	182	202	222	162	182	202	222	162 -	- 222
Konstruktion 4c PAVATHERM & PAVAPOR 22 mm	0.22	0.20	0.18	0.16	9.0	10.3	11.5	12.8	0.10	0.07	0.05	0.04	42 / 46	44 / 48	45 / 49	45 / 49	-3/-10	-3/-10

^{*} Objektspezifische Akustikwerte sind bauseits nachzuweisen

Konstruktion 5a Konstruktion 5b - für verbesserten Schallschutz

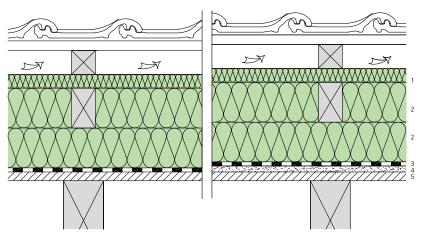
- 1 PAVATHERM-PLUS 60 120 mm
- 2 PAVATHERM 60 160 mm 3 PAVATEX DSB 2
- 4 Gipsfaserplatte 12.5 mm 5 Schalung 20 mm

Konstruktionskennwerte			rliche schutz				_	omme Hitzes		-					Schall	schutz		
Berechnungsgrundlagen Kennwerte PAVATEX-Produkte ab Seite 6		(Anford	(W/m2I erungen inergie S.	•	Pha		schieb (h)	ung	Dyi	nam. U (W/r	-Wert l n2K)	J24	S		rtetes mmmas (dB) *	ss	Anpas	trum- sungs- e (dB)
	N	lit Wärn	nebrücke	en		Fall I I	Heindl						Zi	egel / Da	chschief	er	1)C /C _{tr}	2)C /C _{tr}
Dämmsystem					<u>'</u>			D	ämms	tärke	in mn	1						
	160	180	200	220	160	180	200	220	160	180	200	220	160	180	200	220	160	- 220
Konstruktion 5a PAVATHERM-PLUS 60 mm & PAVATHERM	0.23	0.21	0.19	0.17	8.9	10.2	11.5	12.8	0.10	0.07	0.05	0.04	43 / 47	44 / 48	45 / 59	45 / 49	-3/-10	-3/-10
Konstruktion 5b PAVATHERM-PLUS 60 mm & PAVATHERM & Gipsfaserplatte	0.23	0.21	0.19	0.17	9.9	11.1	12.4	13.7	0.09	0.06	0.05	0.03	47 / 51	48 / 52	49 / 53	49 / 53	-3/-10	-4/-10

* Objektspezifische Akustikwerte sind bauseits nachzuweisen

1) Mit Ziegel 2) Mit Dachschiefer

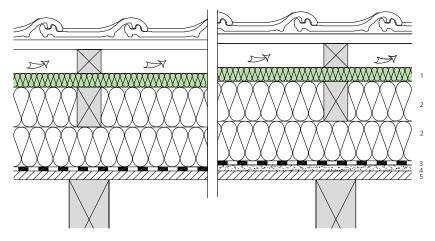
Wichtiger Hinweis zur Verschraubung


Richtige Schraubenlänge und Anzahl sind den Angaben der Schraubenhersteller zu entnehmen.

Konstruktion 6a

Konstruktion 6b - für verbesserten Schallschutz

- 1 PAVATEX-Unterdachsystem
- 2 Lattung / PAVAFLEX
- 3 PAVATEX DSB 2
- 4 Gipsfaserplatte 12.5 mm
- 5 Schalung 20 mm


Konstruktionskennwerte	Winte Kältes					omme Hitzes	erlicher chutz				Schall	schutz		
Berechnungsgrundlagen Lattenabstand parallel zum Sparren: 630 mm quer zum Sparren: 1405 mm	U-Wert (Anford MuKen & Mi	• erungen		Phasenve Eta	rschieb ı (h)	ung	Dynam. U (W/ı	-Wert (n2K)	U24	Schalldä	rtetes mmmas . (dB) *	ss	Anpas	trum- sungs- e (dB)
Lattenbreite: 60 mm	Mit Wärn	nebrücke	en	Fall I	Heindl					Ziegel / Da	achschief	er	1)C /C _{tr}	2)C/C _{tr}
Unterdachsystem					Däm	mstärl	ke zwischen	Lattu	ng in ı	nm				
	160	200	240	160	200	240	160	200	240	160	200	240	160	- 240
PAVISO 22 mm	0.22	0.19	0.16	5.9	7.6	9.2	0.14	0.09	0.06	44 / 48	44 / 48	45 / 49	-3/-10	-3/-10
PAVISO 22 mm & Gipsfaserplatte	0.22	0.18	0.16	6.9	8.5	10.2	0.13	0.08	0.06	48 / 52	48 / 52	49 / 53	-3/-10	-3/-10
ISOROOF-NATUR 35 mm	0.21	0.17	0.15	7.1	8.7	10.3	0.11	0.08	0.05	44 / 48	44 / 48	45 / 49	-3/-10	-3/-10
ISOROOF-NATUR 35 mm & Gipsfaserplatte	0.21	0.17	0.15	8.1	9.7	11.3	0.10	0.07	0.04	48 / 52	48 / 52	49 / 53	-3/-10	-3/-10
ISOROOF-NATUR 52 mm	0.19	0.16	0.14	8.6	10.2	11.8	0.09	0.06	0.04	45 / 49	45 / 49	46 / 50	-3/-10	-3/-10
ISOROOF-NATUR 52 mm & Gipsfaserplatte	0.19	0.16	0.14	9.5	11.2	12.8	0.08	0.05	0.03	49 / 53	49 / 53	50 / 54	-3/-10	-3/-10
ISOROOF-NATUR 60 mm	0.19	0.16	0.14	9.2	10.8	12.4	0.07	0.05	0.03	45 / 49	45 / 49	46 / 50	-3/-10	-3/-10
ISOROOF-NATUR 60 mm & Gipsfaserplatte	0.19	0.16	0.14	10.2	11.8	13.4	0.07	0.04	0.03	49 / 53	49 / 53	50 / 54	-3/-10	-3/-10

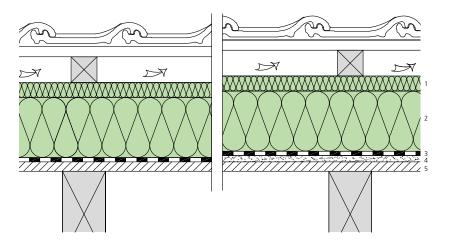
Kennwerte PAVATEX-Produkte ab Seite 6

^{*} Objektspezifische Akustikwerte sind bauseits nachzuweisen

Konstruktion 6c Konstruktion 6d - für verbesserten Schallschutz

- 1 PAVATEX-Unterdachsystem
- 2 Lattung / MF-Dämmung
- 3 PAVATEX DSB 2
- 4 Gipsfaserplatte 12.5 mm
- 5 Schalung 20 mm

Konstruktionskennwerte	Winte Kältes				_	omme Hitzes	erlicher chutz				Schall	schutz		
Berechnungsgrundlagen Lattenabstand parallel zum Sparren: 660 mm quer zum Sparren: 1060 mm	U-Wert ((Anford MuKen & Mi	• erungen	,	Phasenve Eta	rschieb a (h)	ung	Dynam. U (W/n		J24	Schalldä	rtetes mmmas . (dB) *	ss	Anpas	trum- sungs- e (dB)
Lattenbreite: 60 mm	Mit Wärm	nebrück	en	Fall I	Heindl					Ziegel / Da	achschief	er	1)C /C _{tr}	2)C /C _{tr}
Unterdachsystem					Däm	mstär	ke zwischen	Lattu	ng in ı	mm				
	160	200	240	160	200	240	160	200	240	160	200	240	160	- 240
PAVISO 22 mm	0.22	0.18	0.15	2.9	3.4	4.0	0.16	0.13	0.10	44 / 48	44 / 48	45 / 49	-3/-10	-3/-10
PAVISO 22 mm & Gipsfaserplatte	0.22	0.18	0.15	4.0	4.5	5.0	0.15	0.12	0.10	48 / 52	48 / 52	49 / 53	-3/-10	-3/-10
ISOROOF-NATUR 35 mm	0.20	0.17	0.15	4.0	4.5	5.1	0.14	0.11	0.09	44 / 48	44 / 48	45 / 49	-3/-10	-3/-10
ISOROOF-NATUR 35 mm & Gipsfaserplatte	0.20	0.17	0.14	5.0	5.6	6.2	0.13	0.10	0.08	48 / 52	48 / 52	49 / 53	-3/-10	-3/-10
ISOROOF-NATUR 52 mm	0.19	0.16	0.14	5.5	6.1	6.7	0.11	0.09	0.07	45 / 49	45 / 49	46 / 50	-3/-10	-3/-10
ISOROOF-NATUR 52 mm & Gipsfaserplatte	0.19	0.16	0.14	6.6	7.1	7.8	0.10	0.08	0.06	49 / 53	49 / 53	50 / 54	-3/-10	-3/-10
ISOROOF-NATUR 60 mm	0.18	0.15	0.13	6.3	6.8	7.5	0.10	0.07	0.06	45 / 49	45 / 49	46 / 50	-3/-10	-3/-10
ISOROOF-NATUR 60 mm & Gipsfaserplatte	0.18	0.15	0.13	7.3	7.9	8.5	0.09	0.07	0.06	49 / 53	49 / 53	50 / 54	-3/-10	-3/-10

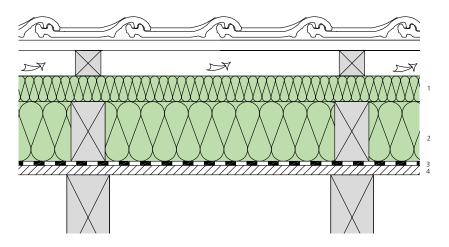

 ${\it Kennwerte\ Mineral faser d\"ammung:}$

Dichte ρ [kg/m³] 32 Wärmeleitzahl λ_D [W/m K] 0.036 * Objektspezifische Akustikwerte sind bauseits nachzuweisen

Konstruktion 7a

Konstruktion 7b - für verbesserten Schallschutz

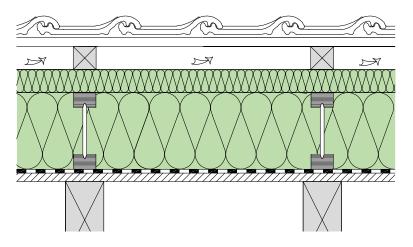
- 1 PAVATEX-Unterdachsystem
- 2 PAVAFLEX 160 180 mm
- 3 PAVATEX DSB 2
- 4 Gipsfaserplatte 12.5 mm
- 5 Schalung 20 mm


Konstruktionskennwerte	Winte Kältes				9	Somme Hitzes	erlicher chutz				Schall	schutz		
Berechnungsgrundlagen Kennwerte PAVATEX-Produkte ab Seite 6	U-Wert (Anford MuKen & Mi	erungen	,	Phasenvei Eta	rschieb (h)	oung	Dynam. U (W/r	-Wert n2K)	U24	Bewe Schalldä Rw ca		SS	Anpas	trum- sungs- e (dB)
	Mit Wärm	nebrück	en	Fall I	Heindl					Ziegel / Da	achschie	fer	1)C /C _{tr}	2)C /C _{tr}
Unterdachsystem						D	ämmstärke	in mn	า					
	140	160	180	140	160	180	140	160	180	140	160	180	140	- 180
ISOROOF-NATUR 35 mm	0.22	0.20	0.18	5.2	6.0	6.8	0.16	0.13	0.11	43 / 47	44 / 48	45 / 49	-3/-10	-3/-10
ISOROOF-NATUR 35 mm & Gipsfaserplatte	0.22	0.20	-	5.7	6.5	-	0.16	0.13	-	47 / 51	48 / 52	-	-3/-10	-3/-10
ISOROOF-NATUR 52 mm	0.20	0.18	-	6.7	7.5	-	0.12	0.10	-	44 / 48	45 / 49	-	-3/-10	-3/-10
ISOROOF-NATUR 52 mm & Gipsfaserplatte	0.20	0.18	-	7.2	8.0	-	0.12	0.10	-	48 / 52	49 / 52	-	-3/-10	-3/-10
ISOROOF-NATUR 60 mm	0.20	0.18	-	7.3	8.1	-	0.10	0.09	-	48 / 52	49 / 52	-	-3/-10	-3/-10
ISOROOF-NATUR 60 mm & Gipsfaserplatte	0.20	0.18	-	7.9	6.6	-	0.10	0.09	-	48 / 52	49 / 52	-	-3/-10	-3/-10

^{*} Objektspezifische Akustikwerte sind bauseits nachzuweisen

39

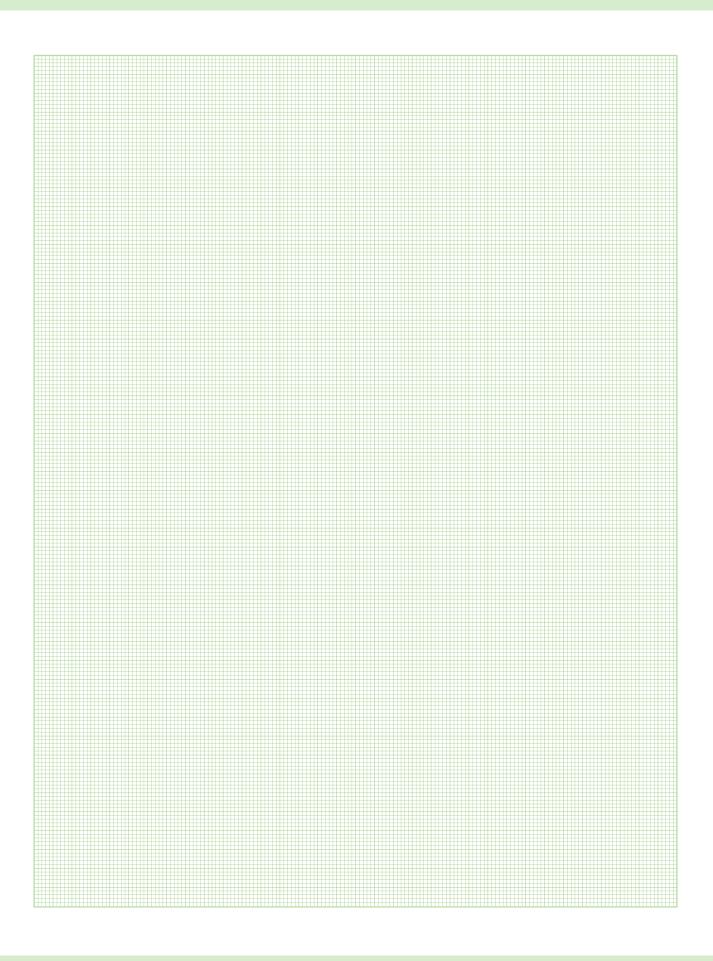
Konstruktion 8



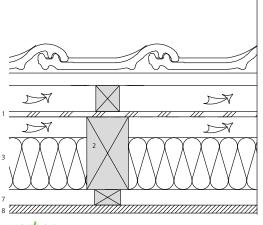
- PAVATEX-Unterdachsystem
 Aufdopplung Vollholz / PAVAFLOC
 PAVATEX DSB 2
 Schalung 20 mm

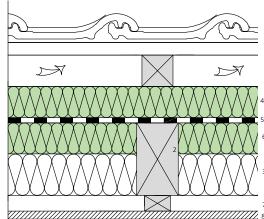
Konstruktionskennwerte			rliche: schutz						erliche schutz						Schall	schutz		
Berechnungsgrundlagen Aufdopplungsachsmass: 700 mm	U		(W/m2l erungen	()	Pha		schieb (h)	ung	Dyı		-Wert (m2K)	U24	s	Bewe challdä	rtetes mmmas	is	•	trum- sungs-
Aufdopplungsachsmass: 700 mm Aufdopplungsbreite: 80 mm	Mu		inergie S.	28)										Rw ca	a. (dB)			e (dB)
	N	lit Wärn	nebrücke	en		Fall I I	Heindl						Zi	iegel / Da	chschief	er	1)C /C _{tr}	²⁾ C /C _{tr}
Unterdachsystem	Dämmstärke zwischen Aufdopplung in mm 180 200 220 240 180 200 220 240 180 200 220 240 180 200 220 240																	
	180	200	220	240	180	200	220	240	180	200	220	240	180	200	220	240	180	- 240
ISOROOF-NATUR 35 mm	0.21	0.19	0.18	0.17	8.1	8.9	9.7	10.5	0.09	0.07	0.06	0.05	44 / 48	45 / 49	46 / 50	47 / 51	-3 / -10	-3 / -10
ISOROOF-NATUR 52 mm	0.19	0.18	0.17	0.16	9.6	10.4	11.2	12.0	0.07	0.06	0.04	0.04	45 / 49	46 / 50	47 / 51	48 / 52	-3 / -10	-3 / -10
ISOROOF-NATUR 60 mm	0.19	0.17	0.16	0.15	10.2	11.0	11.9	12.7	0.06	0.05	0.04	0.03	45 / 49	46 / 50	47 / 51	48 / 52	-3 / -10	-3 / -10
PAVATHERM-PLUS 60 mm	0.18	0.17	0.16	0.15	9.7	10.6	11.4	12.2	0.06	0.05	0.04	0.03	44 / 48	45 / 49	46 / 50	47 / 51	-3 / -10	-3 / -10
PAVATHERM-PLUS 80 mm	0.17	0.16	0.15	0.14	11.2	12.0	12.8	13.6	0.04	0.03	0.03	0.02	45 / 49	46 / 50	47 / 51	48 / 52	-3 / -10	-3 / -10
PAVATHERM-PLUS 100 mm	0.16	0.15	0.14	0.13	12.6	13.4	14.2	15.0	0.03	0.02	0.02	0.02	46 / 50	47 / 51	48 / 52	49 / 53	-3 / -10	-3 / -10
PAVATHERM-PLUS 120 mm	0.15	0.14	0.13	0.12	14.0	14.8	15.6	16.4	0.02	0.02	0.01	0.01	47 / 51	48 / 52	49 / 53	50 / 54	-3 / -10	-3 / -10

Kennwerte PAVAFLOC Seite 8



- PAVATEX-Unterdachsystem
 Aufdopplung mit Stegträger / PAVAFLOC 240 - 400 mm
- 3 PAVATEX DSB 2
- 4 Schalung 20 mm


Konstruktionskennwerte		Winte Kälte:					_	omme Hitzes		-					Schall	lschutz		
Berechnungsgrundlagen Zwischenraum: 700 mm Breite: 58 mm		-Wert (Anford Ken & M	• erungen	•	Pha		schieb (h)	ung	Dy		-Wert l n2K)	J24	S	challdä	rtetes mmmas a. (dB)	ss	Spek Anpas werte	
	N	lit Wärn	nebrücke	en		Fall I I	Heindl						Zi	egel / D	achschief	fer	1)C /C _{tr}	2)C /C _{tr}
Unterdachsystem		Dämmstärke zwischen den Stegträgern in mm																
	240	300	360	400	240	300	360	400	240	300	360	400	240	300	360	400	220 -	- 400
PAVISO 22 mm	0.16	0.13	0.11	0.10	8.3	10.7	13.1	14.7	0.07	0.04	0.02	0.01	49 / 53	50/54	50/54	50/54	-2/-8	-2/-8
ISOROOF-NATUR 35 mm	0.15	0.12	0.10	0.10	9.5	11.9	14.3	15.9	0.06	0.03	0.02	0.01	50/54	51/55	51/55	51/55	-2/-8	-2/-8
ISOROOF-NATUR 52 mm	0.14	0.12	0.10	0.09	10.9	13.3	15.8	17.4	0.04	0.02	0.01	0.01	52/56	53/57	53/57	53/57	-2/-8	-2/-8
ISOROOF-NATUR 60 mm	0.14	0.12	0.10	0.09	11.6	14.0	16.4	18.5	0.04	0.02	0.01	0.01	52/56	53/57	53/57	53/57	-2/-8	-2/-8

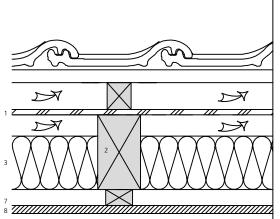

Kennwerte PAVAFLOC Seite 8

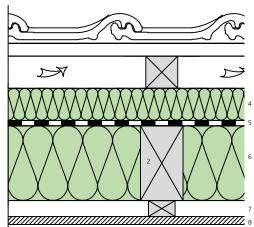
- Unterdach 2-fach belüftet
- Sparren 140 200 mm
- Sparter 140 200 film Klemmfilze (Randleistendämmungen), Däm-mungen mit aufkaschierten Dampfbremsen, Anschlüsse nicht luftdicht! Dämmstärke = Sparrenhöhe 40 mm PAVATEX-Unterdachsystem
- PAVATEX LDB 0.02
- Nachdämmung mit PAVAFLEX > 60 mm, hohlraumfrei
- Lattung 24 mm
- Täferdecke 15 mm

vorher nachher

Konstruktionskennwerte			rliche schutz				_	omme Hitzes		-					Schall	schutz		
Berechnungsgrundlagen Sparrenzwischenraum: 590 mm Sparrenbreite: 100 mm		(Anford	(W/m2I erungen inergie S.	•	Pha	senver Eta	schieb (h)	ung	Dyi	nam. U (W/r	-Wert l n2K)	J24	S	Bewe challdä Rw ca.		is s	Anpas	trum- sungs- e (dB)
Kennwerte PAVAFLEX Seite 10	M	lit Wärm	nebrück	en		Fall I I	Heindl						Zi	egel / Da	achschief	er	1)C /C _{tr}	2)C/C _{tr}
Unterdachsystem)ämm:	stärke	zwisc	hen d	en Spa	arren i	n mm					
	140	160	180	200	140	160	180	200	140	160	180	200	140	160	180	200	140	- 200
ISOROOF-NATUR 35 mm	-	0.25	0.23	0.21	-	4.5	4.6	4.8	-	0.14	0.12	0.11	-	49 / 53	49 / 53	50 / 54	-3 / -10	-4 / -10
ISOROOF-NATUR 52 mm	0.25	0.23	0.21	0.19	5.7	5.9	6.1	6.3	0.13	0.11	0.09	0.08	50 / 54	51 / 55	51 / 55	52 / 56	-3 / -10	-4 / -10
ISOROOF-NATUR 60 mm	0.24	0.22	0.20	0.19	6.4	6.6	6.8	7.0	0.11	0.09	0.08	0.07	50 / 54	51 / 55	51 / 55	52 / 56	-3 / -10	-4 / -10
PAVATHERM-PLUS 60 mm	0.23	0.21	0.20	0.18	5.9	6.1	6.3	6.5	0.11	0.10	0.08	0.07	48 / 52	49 / 53	49 / 53	50 / 54	-4 / -10	-4 / -10
PAVATHERM-PLUS 80 mm	0.21	0.19	0.18	0.17	7.4	7.6	7.8	8.0	0.08	0.07	0.06	0.05	50 / 54	51 / 55	51 / 55	52 / 56	-4 / -10	-4 / -10
PAVATHERM-PLUS 100 mm	0.19	0.18	0.16	0.15	8.8	9.0	9.2	9.4	0.06	0.05	0.04	0.04	51 / 55	52 / 56	52 / 56	53 / 57	-4 / -10	-4 / -10
PAVATHERM-PLUS 120 mm	0.17	0.16	0.15	0.14	10.1	10.4	10.6	10.8	0.04	0.03	0.03	0.03	52 / 55	53 / 56	53 / 57	54 / 58	-4 / -10	-4 / -10
PAVATHERM-PLUS 140 mm	0.14	0.13	0.13	0.13	14.4	15.2	15.2	16.0	0.02	0.01	0.01	0.01	52 / 55	53 / 56	53 / 57	54 / 58	-4 / -10	-4 / -10
PAVATHERM-PLUS 160 mm	0.13	0.12	0.12	15.8	16.6	16.6	17.4	0.01	0.01	0.01	0.01	52 / 55	53 / 56	53 / 57	54 / 58	-4 / -10	-4 / -10	

^{*} Objektspezifische Akustikwerte sind bauseits nachzuweisen


1) Mit Ziegel 2) Mit Dachschiefer

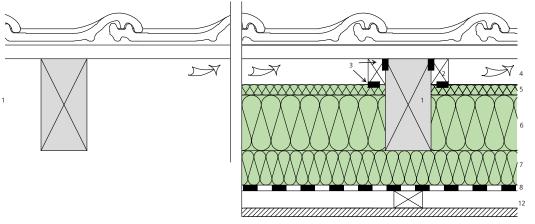

Calcul des épaisseurs d'isolation nécessaires

Construction	Total
Isolation fibres minérales existante 100 mm + PAVAFLEX 60 mm	140 mm
Isolation fibres minérales existante 120 mm + PAVAFLEX 60 mm	160 mm
Isolation fibres minérales existante 140 mm + PAVAFLEX 60 mm	180 mm
Isolation fibres minérales existante 160 mm + PAVAFLEX 60 mm	200 mm

- Unterdach 2-fach belüftet
- Unterdach 2-fach beluftet Sparren 140 200 mm Klemmfilze (Randleistendämmungen), Däm-mungen mit aufkaschierten Dampfbremsen, Anschlüsse nicht luftdicht! PAVATEX-Unterdachsystem PAVATEX LDB 0.02

- PAVAFLEX 160 220 mm
- Lattung 24 mm
- Täferdecke 15 mm

vorher nachher


Konstruktionskennwerte			rliche: schutz				_	omme Hitzes							Schall	schutz		
Berechnungsgrundlagen Sparrenzwischenraum: 590 mm Sparrenbreite: 100 mm		(Anford	(W/m2l erungen inergie S.	•	Pha	senver Eta	schieb (h)	ung	Dyi	nam. U (W/r	-Wert I n2K)	J24	S	Bewe challdä Rw ca.		is	Anpas	trum- sungs- e (dB)
Kennwerte PAVAFLEX Seite 10	N	lit Wärm	nebrücke	en		Fall I I	Heindl						Zi	egel / Da	achschief	er	1)C /C _{tr}	2)C/C _{tr}
Unterdachsystem	Dämmstärke zwischen den Sparren in mm 140 160 180 200 140 160 180 200 140 160 180 200 140 160 180 200																	
	140	160	180	200	140	160	180	200	140	160	180	200	140	160	180	200	140	- 200
ISOROOF-NATUR 35 mm	-	0.24	0.22	0.20	-	6.5	7.3	8.0	-	0.12	0.10	0.08	-	49 / 53	49 / 53	50 / 54	-3 / -10	-4 / -10
ISOROOF-NATUR 52 mm	0.24	0.22	0.20	0.19	7.1	7.9	8.7	9.5	0.12	0.09	0.08	0.06	50 / 54	51 / 55	51 / 55	52 / 56	-3 / -10	-4 / -10
ISOROOF-NATUR 60 mm	0.23	0.21	0.20	0.18	7.8	8.5	9.3	10.1	0.10	0.08	0.06	0.05	50 / 54	51 / 55	51 / 55	52 / 56	-3 / -10	-4 / -10
PAVATHERM-PLUS 60 mm	0.23	0.21	0.19	0.18	7.3	8.1	8.8	9.6	0.10	0.08	0.07	0.05	48 / 52	49 / 53	49 / 53	50 / 54	-4 / -10	-4 / -10
PAVATHERM-PLUS 80 mm	0.20	0.19	0.18	0.16	8.7	9.5	10.3	11.1	0.07	0.06	0.05	0.04	50 / 54	51 / 55	51 / 55	52 / 56	-4 / -10	-4 / -10
PAVATHERM-PLUS 100 mm	0.19	0.17	0.16	0.15	10.1	10.9	11.7	12.5	0.05	0.04	0.03	0.03	51 / 55	52 / 56	52 / 56	53 / 57	-4 / -10	-4 / -10
PAVATHERM-PLUS 120 mm	0.17	0.16	0.15	0.14	11.5	12.3	13.1	13.9	0.04	0.03	0.02	0.02	52 / 55	53 / 56	53 / 57	54 / 58	-4 / -10	-4 / -10
PAVATHERM-PLUS 140 mm	0.14	0.13	0.13	0.13	14.4	15.2	15.2	16.0	0.02	0.01	0.01	0.01	52 / 55	53 / 56	53 / 57	54 / 58	-4 / -10	-4 / -10
PAVATHERM-PLUS 160 mm	0.13	0.12	0.12	0.12	15.8	16.6	16.6	17.4	0.01	0.01	0.01	0.01	52 / 55	53 / 56	53 / 57	54 / 58	-4 / -10	-4 / -10

^{*} Objektspezifische Akustikwerte sind bauseits nachzuweisen

44

Konstruktion 12

- Sparren
- Lattung: Höhe Belüftungsraum gemäss SIA 232 > 45 mm / b = 30 mm
- 3 Abdichtung Lattung mit PAVACOLL
- Belüftungsebene > 45 mm, SIA 232
- 5 ISOROOF-NATUR 22 mm, Plattenstösse mit PAVACOLL abgedichtet.
- 6 PAVAFLEX 60 120 mm
- 7 Querlattung
 Breite 60 mm x Höhe 60 120 mm,
 Achsbstand 625 mm,
 dazwischen PAVAFLEX 60 120 mm
- PAVATEX DB 28
- 9 Lattung / Installationsebene 30 mm
- Täferdecke 15 mm

vorher

nachher

Konstruktionskennwerte			rliche: schutz	•			_	omme Hitzes							Schall	schutz		
Berechnungsgrundlagen Sparrenzwischenraum: 600 mm Sparrenbreite: 100 mm		(Anford	(W/m2I erungen inergie S.	•	Pha	senver Eta	schieb (h)	ung	Dyi	nam. U (W/r	-Wert l n2K)	J24	S		rtetes mmmas (dB) *	ss	Spekt Anpas werte	sungs-
Kennwerte PAVAFLEX Seite 10	М	lit Wärm	nebrücke	en		Fall I I	Heindl						Zi	egel / Da	chschief	er	$^{1)}C/C_{tr}$	²⁾ C /C _{tr}
Unterdachsystem		Sparrenhöhe in mm																
	120	140	160	180	120	140	160	180	120	140	160	180	120	140	160	180	120 -	180
PAVAFLEX (ZS) + (US) 60 mm	-	-	0.25	0.23	-	-	5.1	5.8	-	-	0.16	0.13	-	-	45 / 49	46 / 50	-3 / -10	-3 / -10
PAVAFLEX (ZS) + (US) 80 mm	-	0.25	0.23	0.21	-	5.1	5.9	6.7	-	0.16	0.13	0.11	-	45 / 49	45 / 49	46 / 50	-3 / -10	-3 / -10
PAVAFLEX (ZS) + (US)100 mm	0.26	0.23	0.21	0.19	5.1	5.9	6.7	7.5	0.16	0.13	0.10	0.08	45 / 49	46 / 50	46 / 50	47 / 51	-3 / -10	-3 / -10
PAVAFLEX (ZS) + (US) 120 mm	0.23	0.21	0.19	0.18	5.9	6.7	7.5	8.3	0.13	0.10	0.08	0.07	46 / 50	47 / 51	47 / 51	48 / 52	-3 / -10	-3 / -10

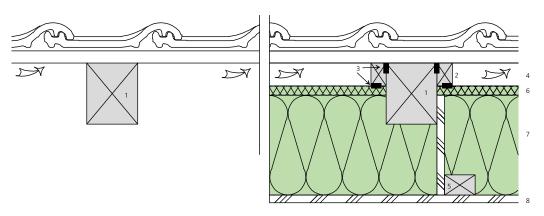
^{*} Objektspezifische Akustikwerte sind bauseits nachzuweisen

1) Mit Ziegel 2) Mit Dachschiefer

Berechnung der nötigen Dämmstärke

PAVAFLEX ZS = Sparrenhöhe - 70 mm PAVAFLEX US = 60 - 120 mm

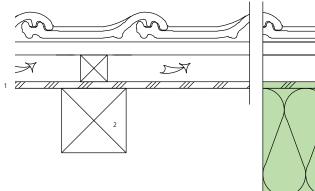
Legende


ZS = Zwischen den Sparren US = Unter den Sparren

Wichtige Anmerkungen

Diese Konstruktion erfüllt gemäss SIA 232 nicht die Anforderungen an ein Unterdach.

- Sparren 100 x 120 mm
- Lattung: Höhe Belüftungsraum gemäss SIA 232 > 45 mm / b = 30 mm
- Abdichtung Lattung mit PAVACOLL
- Belüftungsebene > 45 mm, SIA 232
- Schiftung «Eigenbau»:
 OSB-Platte & Latte 40 x 60 mm
 ISOROOF-NATUR 22 mm, Plattenstösse mit PAVACOLL abgedichtet
- PAVAFLOC
- OSB-Platte 15 mm, luftdicht verklebt.


vorher nachher

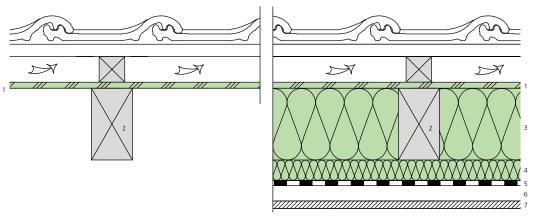
Konstruktionskennwerte			rliche: schutz					omme Hitzes							Schall	schutz		
Berechnungsgrundlagen Sparrenzwischenraum: 590 mm Sparrenbreite: 100 mm					Pha	senver Eta		ung	Dyı	nam. U (W/r	-Wert l n2K)	J24	s	Bewe challdä Rw ca.	mmmas	s	Spekt Anpas werte	sungs-
OSB: 15 mm Latte: 40 / 60 mm	M	lit Wärm	nebrücke	en		Fall I I	Heindl						Zi	egel / Da	chschief	er	1)C/C _{tr}	²⁾ C /C _{tr}
							1											
Schiftung ab UK best. Sparren	140	160	180	200	140	160	180	200	140	160	180	200	140	160	180	200	140 -	200
Dimension best Sparren: 100/120	0.21	0.19	0.18	0.16	7.4	8.2	9.0	9.8	0.11	0.09	0.07	0.06		44 / 48	45 / 49	46 / 50	-3 / -10	-3 / -10
Dimension best Sparren: 100/140	0.20	0.18	0.16	0.15	8.2	9.0	9.8	10.6	0.09	0.07	0.06	0.04	44 / 48	45 / 49	45 / 49	46 / 50	-3 / -10	-3 / -10
Dimension best Sparren: 100/160	0.18	0.17	0.15	0.14	9.1	9.8	10.6	11.4	0.07	0.06	0.04	0.04	45 / 49	46 / 50	46 / 50	47 / 51	-3 / -10	-3 / -10
Dimension best Sparren: 100/180	0.17	0.16	0.15	0.14	9.9	10.7	11.4	12.2	0.06	0.04	0.04	0.03	46 / 50	47 / 51	47 / 51	48 / 52	-3 / -10	-3 / -10

Kennwerte PAVAFLOC Seite 8

* Objektspezifische Akustikwerte sind bauseits nachzuweisen

- M KC
- PAVAROOF-K oder PAVAROOF-W
- Sparren
- Schiftung «Eigenbau»:
 OSB-Platte & Latte 40 x 60 mm
 PAVAFLOC 3
- OSB-Platte 15 mm, luftdicht verklebt.

vorher


Konstruktionske	nnwerte			rliche schutz	-			_	omme Hitzes		-					Schall	schutz		
Berechnungsgrun Alter Sparrensprung:	dlagen 700 mm					Pha		schieb (h)	ung	Dyı		-Wert l n2K)	J24	s		rtetes mmmas	ss	Spek Anpas	trum- sunas-
Sparrenbreite:	100 mm							. ,			•	,			Rw ca.	(dB) *			(dB)
OSB: Latte:	15 mm 40 / 60 mm	М	Mit Wärmebrücken				Fall I I	Heindl						Zi	egel / Da	achschief	er	1)C /C _{tr}	2)C/C _{tr}
									D	ämms	tärke	in mm	1						
Schiftung ab UK bes	st. Sparren	140	160	180	200	140	160	180	200	140	160	180	200	140	160	180	200	140 -	- 200
Dimension best Sparre	n: 100/120	0.17	0.16	0.15	0.14	9.3	10.1	10.8	11.6	0.06	0.05	0.04	0.04	44 / 48	44 / 48	45 / 49	46 / 50	-3 / -10	-3 / -10
Dimension best Sparre	n: 100/140	0.16	0.15	0.14	0.13	10.1	10.9	11.6	12.4	0.05	0.04	0.03	0.03	44 / 48	45 / 49	45 / 49	46 / 50	-3 / -10	-3 / -10
Dimension best Sparre	n: 100/160	0.16	0.14	0.14	0.13	10.9	11.7	12.4	13.2	0.04	0.03	0.03	0.02	45 / 49	46 / 50	46 / 50	47 / 51	-3 / -10	-3 / -10
Dimension best Sparre	n: 100/180	0.15	0.14	0.13	0.12	11.7	12.5	13.2	14	0.03	0.03	0.02	0.02	46 / 50	47 / 51	47 / 51	48 / 52	-3 / -10	-3 / -10

nachher

Kennwerte PAVAFLOC Seite 8

* Objektspezifische Akustikwerte sind bauseits nachzuweisen

- PAVAROOF-K oder PAVAROOF-W
- Sparren PAVAFLOC
- Evtl. Querrost / PAVAFLOC
- Dampfbremse armiert
- Querrost / Installationsebene
- Innenbeplankung

vorher nachher

Konstruktionskennwerte			rliche schutz				_	omme Hitzes		-					Schall	schutz		
Berechnungsgrundlagen Best. Sparrenzwischenraum: 530 mm					Pha	senver Eta	schieb (h)	ung	Dyi	nam. U (W/n	-Wert l n2K)	J24	S		rtetes mmmas (dB) *	ss	Spek Anpas werte	sungs-
Sparrenbreite: 100 mm	N	1it Wärn	nebrück	en		Fall I I	Heindl						Zi	egel / Da	chschief	er	1)C /C _{tr}	2)C /C _{tr}
		Mit Wärmebrücken Fall I Heindl Ziegel / Dachschiefer ¹¹C/C Dämmstärke zwischen den Sparren in mm																
Best. Sparrenhöhe	140	160	180	200	140	160	180	200	140	160	180	200	140	160	180	200	140	200
Mit 40 mm Querrost innen	-	0.23	0.21	0.19	-	6.3	7.1	8.0	-	0.13	0.10	0.08	-	46 / 50	46 / 50	47 / 51	-3 / -10	-3 / -10
Mit 60 mm Querrost innen	0.24	0.22	0.20	0.18	6.6	7.4	8.24	9.1	0.13	0.10	0.08	0.07	46 / 50	47 / 51	47 / 51	48 / 52	-3 / -10	-3 / -10
Mit 80 mm Querrost innen	0.22	0.20	0.19	0.17	7.7	8.46	9.28	10.1	0.10	0.08	0.06	0.05	47 / 51	48 / 52	48 / 52	49 / 53	-3 / -10	-3 / -10
Mit 100 mm Querrost innen	0.21	0.19	0.18	0.16	8.60	9.42	10.2	11.1	0.07	0.06	0.05	0.04	47 / 51	48 / 52	48 / 52	49 / 53	-3 / -10	-3 / -10

Kennwerte PAVAFLOC

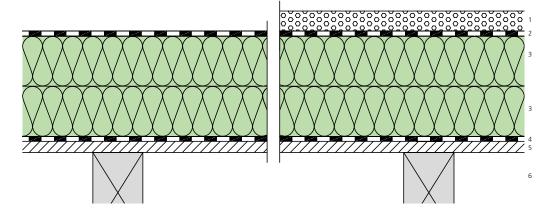
Seite 8

Querrost 60 mm breit und 626 mm Achsmass

* Objektspezifische Akustikwerte sind bauseits nachzuweisen

1) Mit Ziegel 2) Mit Dachschiefer

Kontrolle erforderlich


Konstruktionen 14 und 15 sind im Einzelfall bauphysikalisch zu untersuchen bzw. zu berechnen. Zudem ist es bei beiden Konstruktionen zwingend erforderlich, dass der Zwischenraum hohlraumfrei z.B. mit PAVAFLOC ausgedämmt wird.

48

Konstruktion 16

- Schutzschicht 50 mm (Kies $\rho \geq 60 kg$ / $m^2)$ Dachhaut
- PAVATHERM-FORTE 80 120 mm
- Luftdichtheitsschicht (muss auf die Gesamtkonstruktion abgestimmt werden)
- Mehrschichtplatte ≥ 27 mm
- Balkenlage

Konstruktionskennwerte			rliche schutz					omme Hitzes							Schall	schutz		
Berechnungsgrundlagen		(Anford	(W/m2I lerungen inergie S.	•	Pha		rschieb (h)	ung	Dy		-Wert l n2K)	J24	S	Bewe challdä Rw ca	mmmas	s	Anpas	trum- sungs- e (dB)
Kennwerte PAVATHERM-FORTE Seite 8						Fall I I	Heindl						ohn	e / mit S	chutzsch	icht	1)C /C _{tr}	2)C /C _{tr}
Dämmstoff								D	ämms	tärke	in mm	1						
	160	180	200	240	160	180	200	240	160	180	200	240	160	180	200	240	160 -	- 240
PAVATHERM-FORTE	0.25	0.22	0.20	0.18	9.8	11.1	12.5	13.8	0.09	0.06	0.05	0.03	38 / 44	38 / 44	39 / 45	39 / 45	-3 / -10	-3 / -10

SIA - Normen, Empfehlungen, Dokumentationen

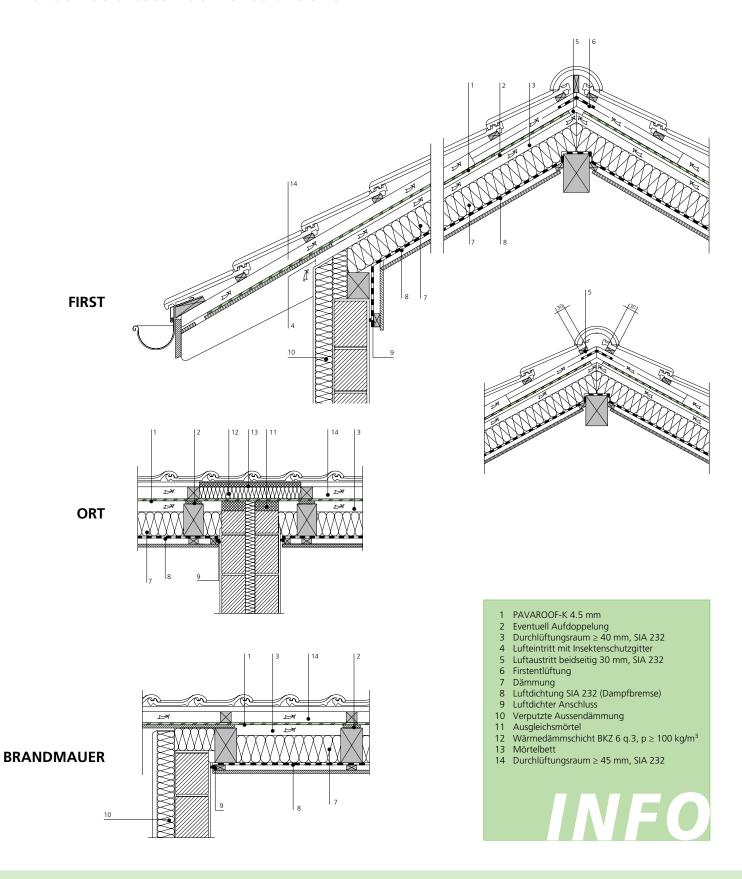
Bei Planung und Ausführung sind folgende Werke zu beachten:

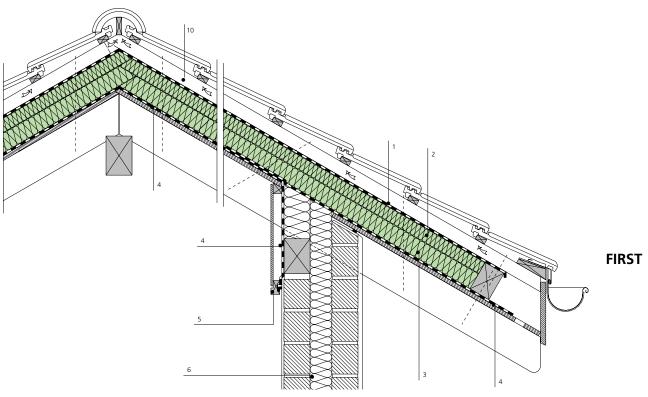
- SIA Norm 180 Wärme- & Feuchteschutz im Hochbau
- SIA Norm 181 Schallschutz im Hochbau
- SIA Norm 183
 Brandschutz im Hochbau
- SIA Norm 232 Geneigte Dächer
- SIA Norm 235
 Dachdeckerarbeiten: geneigte Dächer
- SIA Norm 261 Einwirkungen auf Tragwerke

- SIA Norm 265 Holzbau
- SIA Norm 271
 Flachdächer
- SIA Norm 279 Wärmedämmstoffe
- SIA Dokumentation 83 Brandschutz im Holzbau
- Merkblatt SIA 381
 Baustoff-Kennwerte

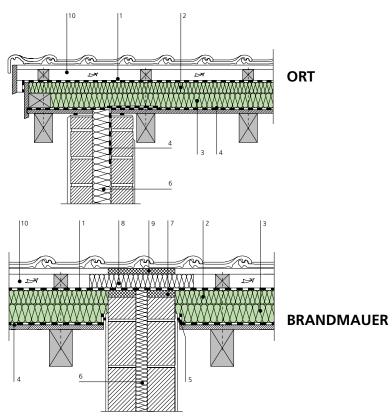
Holzschutz

Der Kontakt von nassen Holzschutzmitteln mit PAVATEX-Unterdachsystemen ist zu vermeiden. Holzschutz-Imprägierungen enthalten Netzmittel, welche den Feuchtigkeitsschutz der Platten zerstören.




50

Zweifach belüftete Dachkonstruktionen



Einfach belüftete Dachkonstruktionen – Aufsparrendämmung

Einfach belüftete Dachkonstruktionen - Zwischensparrendämmung

Systeme:

PAVAROOF-W PLUS

PAVISO

ISOROOF-NATUR

Unterdach-KN bituminiert

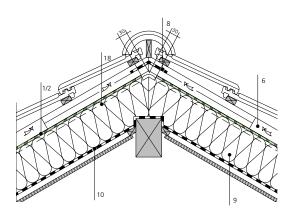
PAVATHERM-PLUS

Hinweise

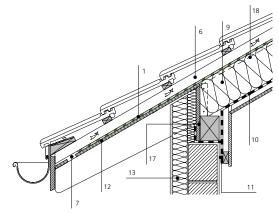
Ausführungsmöglichkeiten für ISOROOF-NATUR, PAVATEX-Unterdach-KN bituminiert und PAVATHERM-PLUS.

Unterdächer für erhöhte **Beanspruchung SIA 232**

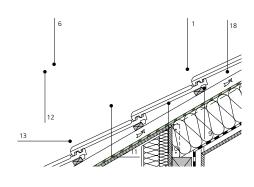
- Mit PAVATEX ADB
- Plattenstösse mit PAVACOLL abgedichtet (Anschlüsse mit PAVATAPE)
- Plattenstösse und Anschlüsse mit PAVATAPE abgedichtet.


Unterdächer ohne Fugenabdichtung

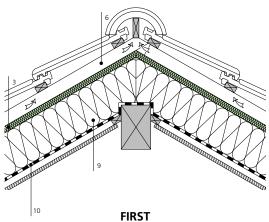
(Ausführung nur mit ISOROOF-NATUR und Unterdach bituminiert) Nur Anschlüsse mit PAVATAPE. Kehlausbildung mit Kehlblech.


Legende:

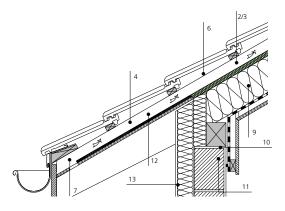
- PAVAROOF-W PLUS 8 mm
- PAVISO
- ISOROOF-NATUR / Unterdach bituminiert
- 4 Bituminierte Weichfaserplatte ≥ 8 mm
- Bituminerte Weichfaserplatte ≤ 13 mm
- 6 Durchlüftungsraum ≥ 45 mm, SIA 232-l, Tab.2
- Lufteintritt
- 8 Firstentlüftung
- 9 Dämmung
- 10 Luftdichtung SIA 180 (Dampfbremse)
- 11 Luftdichter Anschluss
- 12 Schalung
- 13 Aussendämmung verputzt
- 14 Ausgleichsmörtel
- 15 Wärmedämmschicht BKZ 6 q.3, p ≥ 100 kg/m³
- 16 Mörtelbett
- 17 Abschottung
- 18 Eventuell Aufdoppelung bei PAVAROOF-W



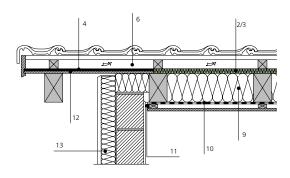
FIRST PAVAROOF-W PLUS **PAVISO**

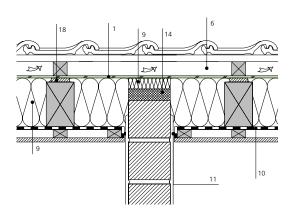


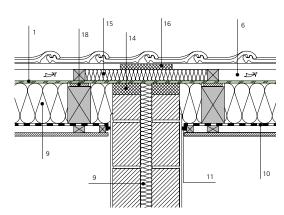
TRAUF PAVAROOF-W PLUS

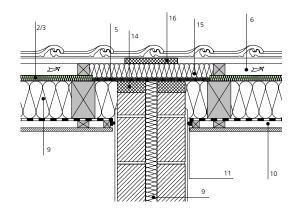


ORT PAVAROOF-W PLUS




ISOROOF-NATUR
Unterdach-KN bituminiert
PAVATHERM-PLUS


TRAUFISOROOF-NATUR
Unterdach-KN bituminiert
PAVISO


ORT
ISOROOF-NATUR
Unterdach-KN bituminiert
PAVISO

TRENNWANDFür alle einfach belüfteten Dachsysteme
Gezeigte Lösung mit PAVAROOF-W PLUS

BRANDMAUERPAVAROOF-W PLUS

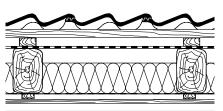
BRANDMAUER ISOROOF-NATUR Unterdach-KN-bituminiert PAVISO

PAVATEX-Systemlösungen für die Dachsanierung mit ISOROOF-NATUR oder PAVATHERM-PLUS und PAVATEX LDB 0.02

Sanierung von aussen mit ISOROOF oder PAVATHERM-PLUS und PAVATEX LDB 0.02 wenn die raumseitige Luftdichtheit nicht hergestellt werden kann

vorher...

Aufbau von aussen nach innen:


Dacheindeckung Lattung Konterlattung

Unterdach oder Unterdachbahn

140 mm Sparren / 40 mm belüf. Luftschicht 100 mm MF-Dämmmatte mit aufkaschierter

Dampfbremse

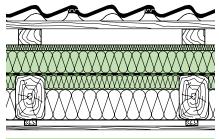
24 mm Lattung / Luftschicht 15 mm Täferdecke

mittlerer U-Wert = 0,434 W/(m² K) Phasenverschiebung = 5,3 Std. Temperaturamplitudenverhältnis = 0,26 (26%)

...nachher mit PAVATEX

Aufbau von aussen nach innen:

Dacheindeckung Lattung Konterlattung


100 mm PAVATHERM-PLUS-Dämmelement

PAVATEX LDB 0.02 Luftdichtbahn nm PAVAFLEX

40 mm PAVAFLEX

100 mm MF-Dämmmatte mit aufkaschierter Dampfbremse

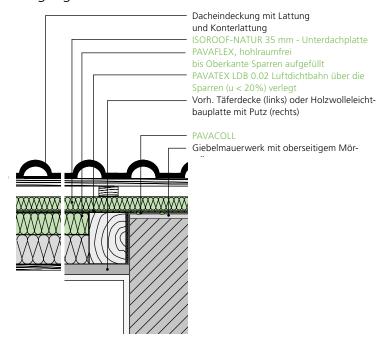
24 mm Lattung / Luftschicht 15 mm Täferdecke

mittlerer U-Wert = 0,188 W/(m² K) (< U_{max}) Phasenverschiebung = 12,2 Std. Temperaturamplitudenverhältnis = 0,05 (5%) Die optimale Sanierungsvariante mit ISOROOF-NATUR (Mindestdicke 35 mm) oder PAVATHERM-PLUS bei Neu- oder Umdeckung des Daches mit Verbleib der bestehenden Dämmung.

Die Luftdichtung wird mit der PAVATEX LDB 0.02 Luftdichtbahn ($s_d < 0.02$ m) direkt auf der Sparrenoberseite hergestellt.

Die vorhandene Dämmschicht muss mit PAVAFLEX hohlraumfrei bis zur Sparrenoberkante ergänzt und Belüftungsöffnungen im Sparrenzwischenraum müssen dauerhaft geschlossen werden.

Die Stossverklebung der PAVATEX LDB 0.02 Luftdichtbahn (s < 0,02 m) wird mit PAVAFIX 60 ausgeführt. Die Anschlüsse an bestehende Teile erfolgt gemäss den Details zum Einbau der Luftdichtbahn von aussen.

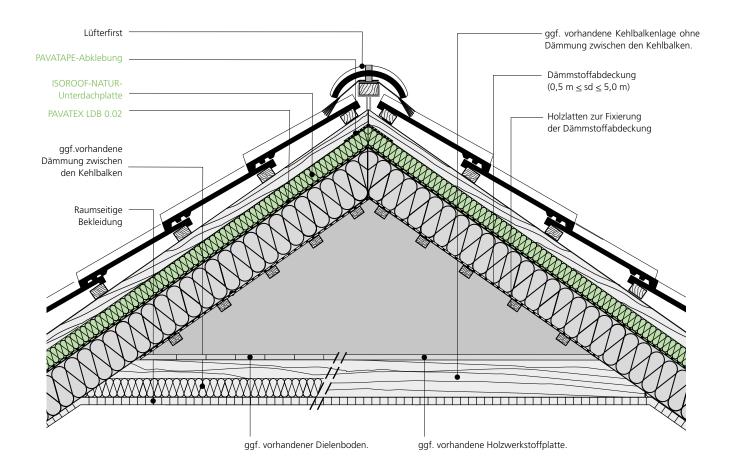

Detail zum Einbau der Luftdichtbahn von aussen

Traufanschluss an das Aussenmauerwerk

PAVAFLEX, hohlraumfrei bis Oberkante Sparren aufgefüllt Vorh. Täferdecke ISOROOF-NATUR 35 mm - Unterdachplatte PAVACOLL Mauerwerk mit oberseitigem Mörtelbett PAVATEX LDB 0.02 Luftdichtbahn über die Sparren (u < 20%) und über die Traufschalung verlegt Aufdopplung der Konterlattung Dacheindeckung mit Lattung und Konterlattung

Detail zum Einbau der Luftdichtbahn von aussen

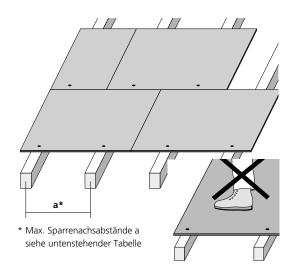
Ortganganschluss an das Giebelmauerwerk



PAVATEX-Systemlösungen für die Dachsanierung mit ISOROOF-NATUR oder PAVATHERM-PLUS und PAVATEX LDB 0.02

Regeldetail First

Firstdetail zum Einbau der Luftdichtbahn PAVATEX LDB 0.02 von aussen bei Dämmung der Dachschräge bis zum First



- Die Dämmung zwischen den Sparren ist dauerhaft hohlraumfrei einzubauen.
- Die PAVATEX LDB 0.02 ist auf der Sparrenoberseite mit einer mindestens 35 mm dicken ISOROOF-NATUR-Holzfaserdämmplatte abzudecken.
- Durchdringungen und Anschlüsse werden Produkten aus dem PAVATEX-Luftdichtprogramm abgeklebt.
- Im Bereich des Spitzbodens ist auf der Sparrenunterseite eine innenseitige Dämmstoffabdeckung (0,5 m ≤ sd ≤ 5,0 m) überlappend zu verlegen. Um ein Ausbauchen der Abdeckung und ein Absacken der Dämmung langfristig zu verhindern, sollte die Abdeckung mindestens mit Latten (alternativ: Sparschalung) fixiert werden. An Stelle einer Dämstoffabdeckung kann innenseitig
- auch eine dünne OSB-Platte auf den Sparren verlegt werden.
- Eine raumseitige Bekleidung der Kehlbalkenlage (z.B. aus verputzten Holzwolle-Leichtbauplatten oder aus Gipskarton-/ Gipsfaserplatten oder Profilholzschalung) wird vorausgesetzt.
- Für einen fachgerechten Einbau der ISOROOF-NATUR oder PAVATHERM-PLUS Dämmplatten sind die PAVATEX Verarbeitungshinweise zu beachten.
- Nach Durchführung der Sanierungsarbeiten sind die Lüftungsgewohnheiten an die neuen Gegebenheiten in den Wohnräumen entsprechend anzupassen (siehe hierzu nachstehende Hinweise zum "richtigen" Lüften).

ISOROOF-NATUR / PAVATHERM-PLUS / PAVATEX Unterdach-KN bituminiert Für einfach belüftete Dächer

Sparrenunabhängige Verlegung

- 1 Platten immer trocken lagern und verlegen.
- 2 Kantenbeschädigungen vermeiden.
- 3 Platten mit Kammseite Richtung First verlegen.
- 4 Platten rechtwinklig zueinander verlegen und satt stossen.
- **5** Platten nur im Sparrenbereich begehen.
- **6** Plattenstösse in Fall-Linie immer versetzt zwischen Sparren anordnen.
- 7 Versatz der Plattenstösse > 20 cm, aber nie im gleichen Sparrenfeld.
- **8** Einsatz auf Sparrenpfetten: Verlegung wie über Sparren, aber Horizontalstösse auf Sparrenpfetten vermeiden.

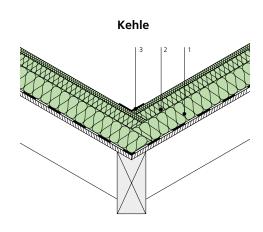
Maximale Sparrenachsabstände für PAVATEX-Unterdachsysteme

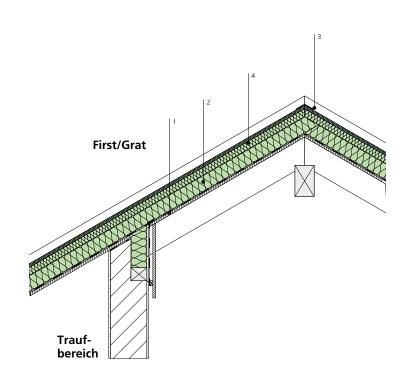
Unterdachsystem	Dicke	Maximale Sparrenachsabstände	
•	mm	ohne PAVACOLL	mit PAVACOLL
Unterdach bitumiert	24	75 cm	90 cm
ISOROOF-NATUR	22	85 cm	100 cm
ISOROOF-NATUR	35	100 cm	115 cm
ISOROOF-NATUR	52	110 cm	124 cm
ISOROOF-NATUR	60	110 cm	124 cm
PAVATHERM-PLUS (178x56)	60 - 160	89 cm	89 cm
PAVATHERM-PLUS (158x78)	60 - 120	79 cm	79 cm

Lagerung

Sämtliche PAVATEX-Dämmplatten immer trocken transportieren, lagern und einbauen.

Zuschnitt


PAVATEX-Dämmplatten lassen sich mit Handkreissäge (und Wenigzahn-Sägeblatt) oder dem Stichsägenblatt für Holzfaserdämmplatten einfach bearbeiten



PAVATHERM-PLUS / ISOROOF-NATUR und PAVATHERM Das Aufsparrendämmsystem für einfach belüftete Dachkonstruktionen

Ausführungsdetails

Bauablauf ab verlegter Luftdichtigkeitsschicht

- 1 PAVATHERM-Dämmplatten verlegen. Platten-Schmal-Seite parallel zu Traufbrett.
- 2 PAVATHERM-PLUS Dämmplatten verlegen. Platten-Längs-Seite parallel zu Traufbrett. Platten mit Kamm-Seite Richtung First verlegen.
- **3** Abdichten der Plattenstösse mit PAVACOLL. Variante: PAVATAPE 150 mm. Anschlüsse (First, Grat, Kehle usw.) immer mit PAVATAPE 150 mm abdichten.
- **4** Die Konterlatten werden mit Doppelgewindigeschrauben durch Dämmung und Schalung in die Sparren fixiert. Konterlatten sind vorzubohren.
 - Anzahl und Länge der Schrauben sind gemäss Herstellerangaben sowie Norm SIA 261 zu bestimmen.

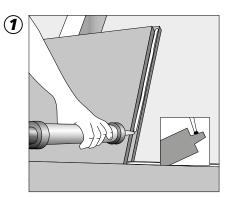
PAVACOLL

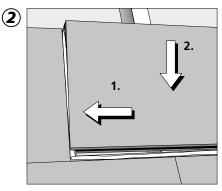
Zum Abdichten der Plattenstösse von PAVATHERM-PLUS, ISOROOF-NATUR und PAVATEX-Unterdachplatten-KN bituminiert.

Zum wasser- und wetterfesten Verkleben von PAVATEX-Dämm- und Unterdachsystemen, für luftdichtes Abkleben von Überlappungen und Anschlüssen von PAVATEX-Bahnen im Innen- und Aussenbereich sowie als Haftvermittler von PAVATAPE auf feuchten und offenporigen Oberflächen. Haftet auch auf Holz, Holzwerkstoffplatten, nicht brennbaren Bauplatten, Beton, Mauerwerk, Putz, Kunststoffen, korrosionsgeschützten Metallen und feuchten Untergründen.

Hinweise zur fachgerechten Verarbeitung:

Mit Hand- oder Druckluftpistole auf staub- und fettfreie Klebeflächen auftragen. Der PAVACOLL 310/600 übernimmt die Funktion der Abdichtung, nicht die einer kraftschlüssigen Verbindung.


Verkleben der Plattenstösse


- ② PAVACOLL 310/600 mit Hand- oder Druckluftpistole auf die Kamm-Oberseite auftragen. Der Kamm muss staubfrei und unbeschädigt sein.
- ② Die nächste Platte wie dargestellt ansetzen und fest anpressen bis die Fugen geschlossen sind. Etwas Kleberüberschuss muss aus der Fuge herausquellen. Nach ca. 2 h ist die Fuge dicht. Die Platten mit Breitkopfnägeln oder Klammern im Bereich des unteren Plattenrandes an den Sparren befestigen.

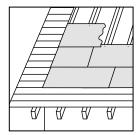
Verbrauchsrichtwerte					
	Format (cm)	g/m	g/m²		
ISOROOF-NATUR 18*	77 x 250	14	24		
ISOROOF-NATUR 22	77 x 250	15	26		
ISOROOF-NATUR 35	77 x 250	19	33		
ISOROOF-NATUR 52	77 x 250	19	33		
ISOROOF-NATUR 60	77 x 250	19	33		
PAVATHERM-PLUS 60/80/100/120	80 x 160	19	37		
PAVATHERM-PLUS 60/80/100/120/140/160	58 x 180	19	45		
PAVATEX-Unterdach bituminiert 24	77 x 252	17	30		
Verklebung und Anschlüsse von PAVATEX-Bahnen		15	-		

Verarbeitungstemperatur

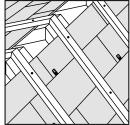
Mindestverarbeitungstemperatur für Untergrund und Luft: +5 C° Verarbeitungstemperatur für Kleber: +5 C° bis +30 C°

Notwendigkeit von Dilatationsfugen

Bei Trauflängen grösser 15 m sind Dilatationsfugen vorzusehen.

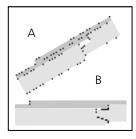

Vorgehen:

Nach verlegen der gesamten Fläche über entsprechendem Sparren einen Trennschnitt von ca. 5 mm ausführen und anschliessend mit PAVATAPE 150 abdichten.

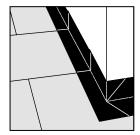


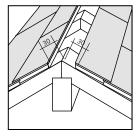
PAVISO
Für einfach belüftete Dächer

1 Verlegung

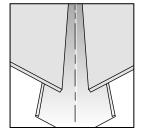

Von links nach rechts quer zu den Sparren, befestigt mit Breitkopfnägel 60 mm, verzinkt.

4 Konterlatte und Klammer


Konterlatte nicht bei Überlappung vernageln.
Klammer bei Vertikalstoss über


2 Keilnut abgedeckt

- A Horizontal: 60 mm Überlappung.
- B Vertikal:80 mm Überlappung.


5 Anschlüsse

Mit PAVATAPE-Abklebeband 150 mm abdichten.

3 First

Luftaustrittsöffnung beidseitig 30 mm.

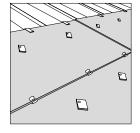
6 Kehlenausbildung

Mit Kehlblech.

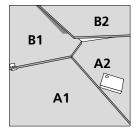
Arbeitssicherheit

SUVA-Bescheinigung Nr. 6025.

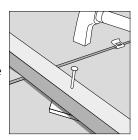
PAVISO ist begehbar, beschränkt durchbruchsicher, SUVA-geprüft bei 73 cm Spannweite.



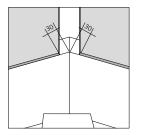
PAVAROOF-K / PAVAROOF-W PLUS Die Unterdachplatte für zweifach bzw. einfach belüftete Dächer


 Plattenbefestigung mit Abstandhalter ca. 20 cm unterhalb des oberen Plattenrandes.
 Plattendurchhang zwischen den Sparren 10 mm.

- Verlegebild der Unterdachfläche mit Abstandhalter und PAVACLIP (blau bei PAVAROOF-K / rot bei PAVAROOF-W PLUS). Plattenüberdeckung:
 - Stösse in Fallrichtung immer auf den Sparren liegend ≥ 8 cm.
 - Stösse quer zur Fallrichtung: 6 cm. (gewährleistet durch PAVACLIP).



2 Der Kreuzpunkt.



5 Vernagelung der Konterlatte durch die Abstandhalter hindurch.

Sind aus statischen Gründen zusätzliche Vernagelungen erforderlich, sind diese Nägel ebenfalls durch die gleichen Abstandhalter hindurch zu schlagen.

3 First-Detail: Luftaustrittsöffung beidseitig 30 mm.

Einteilung der Sparren und Platten

Sparren-	Plattenlängen PAVAROOF-K/ -W in cm				
Achsmasse	K	215	262		
in cm	W	215	262		
58					
59			Х		
60			Х		
61			Х		
62			•		
63			•		
64		Χ			
65		Χ			
66		Χ			
67		•			
68		•			
69		•			
70					
71					
72					
73			·		

- Format passend ohne Abschnitte. Überlappung: mind. 8 cm.
- X Zuschnitt bauseits aus Originalformat.

PAVAROOF-W PLUS - Einsatz von Dämmstoffen:

Mit PAVAROOF-W-PLUS werden einfach belüftete Dachkonstruktionen erstellt. Solche weisen gemäss Norm SIA 232-I keinen Durchlüftungsraum zwischen Wärmedämmung und Unterdach auf. Die zur Verfügung stehende Konstruktionshöhe zwischen Luftdichtung und PAVAROOF-W PLUS wird hohlraumfrei gedämmt. Als Dämm-Material eignen sich Mineralfaserdämmstoffe mit einem Raumgewicht von maximal 32 kg/m³, oder Cellulosefaser-Dämmstoffe.

Arbeitssicherheit

SUVA-Bescheinigung Nr. 6025.

PAVAROOF-K ist begehbar, beschränkt durchbruchsicher, SUVA-geprüft bei 73 cm Spannweite.

PAVAROOF-W PLUS 8 mm ist begehbar, beschränkt durchbruchsicher. SUVA-geprüft bei 73 cm Spannweite.

Flachdach

Allgemeines

PAVATHERM-FORTE-Dämmplatten eignen sich für die Ausführung von wärmegedämmten Flachdächern. PAVATHERM-FORTE-Dämmplatten verbessern durch ihre hohe spezifische Wärmekapazität den sommerlichen Hitzeschutz von leichten Dachkonstruktionen erheblich. Dank Ihrer hohen Masse erhöht sich auch der Schallschutz solcher Konstruktionen.

Verlegung

Die PAVATHERM-FORTE-Dämmplatte kann in der Konstruktion als obere oder untere Dämmschicht eingesetzt werden. Als obere Schicht bietet sie eine druckfeste und ebene Fläche für die weitere Verarbeitung.

Dabei ist das Abdichtungssystem auf die Konstruktion abzustimmen. Als untere Schicht wird sie wie eine herkömmliche Dämmschicht verlegt. Die Unterkonstruktion muss in der Regel ein Gefälle von 1,5% aufweisen. Der Aufbau und die Verarbeitung des Flachdaches erfolgt nach den geltenden Normen und dem Stand der Technik.

Befestigung

Die Befestigung der Wärmedämmschichten erfolgt gemäss den geltenden Normen und dem Stand der Technik.

Dampfbremse

Die Dampfbremse muss auf den gesamten Dachaufbau abgestimmt werden, so dass ein dauerhafter, sicherer Schutz der Konstruktion gewährleistet ist. Bei Verwendung eines Trapez-Profilbleches als Unterkonstruktion muss die Dampfbremse ggf. durch eine geeignete Verlegehilfe gegen Verletzungen geschützt werden.

Abdichtung

Die Abdichtung des Flachdaches muss dem jeweiligen Dachaufbau entsprechend ausgeführt, und auf den Verwendungszweck des Daches abgestimmt werden.

Schutzschicht

Je nach Verwendungszweck des Daches ist eine Schutzschicht in der Konstruktion vorzusehen.

Drainageschicht/ Entwässerung

Die Drainageschicht dient bei begehbaren und begrünten Dächern zur Abführung von Meteor- und Sickerwasser. Die Dachentwässerung ist nach den geltenden Normen zu planen und auszuführen.

Durchdringungen

Alle Durchdringungen müssen fachgerecht ausgeführt sein und dürfen die Nutzung des Daches nicht nachteilig beeinflussen.

Anschlüsse

Alle Anschlüsse an Einbauten, Durchdringungen, Gebäude, etc. müssen fachgerecht nach geltenden Normen und Vorschriften ausgeführt werden.

Abschottungen

Je nach Anforderung und Ausführung der Konstruktion sind Abschottungen vorzusehen und einzubauen.

62

PAVATEX-Dichtprodukte und deren Verarbeitung

Ausführliche Hinweise zur fachgerechten Anwendung sämtlicher PAVATEX-Dichtprodukte finden Sie in der entsprechenden Technikbroschüre «PAVATEX-Dichtsysteme».

Finden Sie diese Broschüre auch online unter:

www.pavatex.ch/downloads.aspx > Technische Dokumentation Schweiz

Weitere Informationen

PAVATEX Partnerschaften

Der SIA (Schweizerischer Ingenieur- und Architektenverein) verfolgt eine partnerschaftliche, regions- und kulturübergreifende Bündelung von vielfältigen fachlichen Kompetenzen. Er erarbeitet mit seinen Normen, Dokumentationen und Merkblättern anerkannte Grundlagen für eine qualitativ hochstehende Berufspraxis. Im Bezug auf die Baunormen gilt der SIA als führender Verband.

www.sia.ch

Gebäudehülle Schweiz (ehemals SVDW) ist der Branchenverband für alle Unternehmen, die in der Gebäudehülle tätig sind. Der Verband wurde 1907 als unabhängiger Schweizerischer Dachdeckermeisterverband (SDV) gegründet und entwickelte sich im Laufe der Zeit weiter zum offenen Verband für alle Spezialisten der Gebäudehülle.

www.gh-schweiz.ch

Holzbau Schweiz (Arbeitgeberverband Schweizer Holzbau-Unternehmungen) betreut und unterstützt als Kompetenz- und Dienstleistungszentrum Mitglieder der Deutschschweiz und aus dem Tessin. Er macht seinen allgemeinen politischen und wirtschaftlichen Einfluss durch die aktive Mitarbeit in verschiedenen schweizerischen und internationalen Organisationen geltend.

www.holzbau-schweiz.ch

MINERGIE® ist ein Qualitätslabel für neue und modernisierte Gebäude. Die Marke wird von der Wirtschaft, den Kantonen und dem Bund gemeinsam getragen. Im Zentrum steht der Komfort – der Wohnund Arbeitskomfort von Gebäudenutzern. Ermöglicht wird dieser Komfort durch eine hochwertige Bauhülle und eine systematische Lufterneuerung.

www.minergie.ch

Das Sentinel-Haus Institut schult Bauunternehmen und Planer zur Erstellung von Gebäuden mit höchsten gesundheitlichen Ansprüchen. Das Konzept umfasst eine transparente und seriöse Unterstützung zur Qualitätssicherung von wohngesunden und behaglichen Lebensräumen in Ziegel- und Holzbauweise. Dabei wird eine optimale Innenraumluftqualität mit vertraglich vereinbarten Zielwerten gesichert.

www.sentinel-haus.eu

natureplus ist der Internationale Verein für zukunftsfähiges Bauen und Wohnen. Das Ziel des Verbandes ist die nachhaltige Entwicklung im Bausektor. Im Verein sind die Markterfahrung des Handels, die technische Kompetenz der Baustoffanwender / Industrie, die wissenschaftliche Qualifikation der Prüfinstitute sowie das Engagement der Umwelt- / Verbraucherschutzverbände und der Gewerkschaften vereinigt.

www.natureplus.org

Ihr Fachhandel berät Sie gerne ausführlich und kompetent:

PAVATEX SA

Rte de la Pisciculture 37 1701 Fribourg ,Schweiz

lhre Gratishotline für technische Fragen: 0800-Dämmen (0800-326636)

Telefon +41 (0)26 426 31 11 Telefax +41 (0)26 426 32 09

info@pavatex.ch / www.pavatex.ch